Pages: 68-86

Date of Publication: 14-Jun-2022

Neuroprotection of brain permeable Forskolin ameliorates behavioral, biochemical and histopathological alterations in rat model of intracerebral hemorrhage

Author: Rajesh Dudi , Sidharth Mehan

Category: Pharmaceutics

[Download PDF]


Mitochondrial complexes enzymes’ (I, II, IV, and V) dysfunction increases neuroinflammatory cytokines, oxidative stress, and alterations of brain metabolic enzymes may be key pathological hallmarks of cerebral hemorrhage. Here, the first time in the history of this intracerebral hemorrhage (ICH) animal model, we extensively examined the huge range of behavioral, biochemical, neuropathological, morphological, and histopathological effects of direct adenylyl cyclase activator Forskolin (FSK) in adult rats’ brain tissue homogenate, serum, and urine. Intraventricular injection of autologous blood in rats caused impairment in memory, grip strength posture, and cognitive function. Biochemical analysis of brain homogenate, serum, and urine samples in ICH-treated rats showed an increase in altered mitochondrial complexes activities, inflammatory cytokines, oxidative stress, and lipid biomarkers. Neurohistological alterations of hippocampus, basal ganglia, and cerebral cortex of ICH-treated rats exhibit severe neuronal space, irregular damaged cells, and dense pyknotic nuclei-associated marked focal diffused gliosis. FSK (20, 40, and 60 mg/kg, p.o) once-daily treatment for a period of 22 days significantly improved motor performance and cognitive behavior task. Further, FSK treatment significantly improved mitochondrial complexes’ enzyme activity, attenuated inflammatory, and oxidative damage of rat brain. In present research work, neuroprotective effects of direct AC activator FSK responsible for activation of cyclic adenosine monophosphate/protein kinase further leads to CREB activation, and through the repairing in the basal ganglia, cortex, and hippocampus functioning associate with mitochondrial dysfunctioning in cerebral hemorrhage.

Keywords: Cerebral hemorrhage, neuroinflammation, cyclic adenosine monophosphate, forskolin


1. Swerdlow RH. Mitochondrial DNA - Related mitochondrial dysfunction in neurodegenerative diseases. Arch Pathol Lab Med 2002;126:271-80.

2. Kermer P, Jochen HJ. Neuronal apoptosis in neurodegenerative diseases: From basic research to clinical application. Neurodegener Dis 2004;1:9-19.

3. Alavi A, Clark C, Fazekas F. Cerebral Ischemia and Alzheimer’s disease: Critical role of PET and implications for therapeutic intervention. J Nucl Med 1998;39:8.

4. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999;79:1431-568.

5. Smith WS. Pathophysiology of focal cerebral ischemia: A therapeutic perspective. JVasc Interv Radiol 2004;15:S3-12.

6. Sharma SS. Emerging neuroprotective approaches in stroke treatment. CRIPS 2003;4:8-12.

7. Yun YJ, Bombi LE, Dae-Hyun H. Neuroprotective effect of palmul-chongmyeong-tang on ischemia - Induced learning and memory deficits in the rat. Biol Pharm Bull 2007;30:337-42.

8. Minino AM, Arias E, Kochanek KD, Murphy SL, Smith BL. Deaths: Final data for 2000. Natl Vital Stat Rep 2002;51:119.

9. Steven JJ, Reinhart P, Menelas NP. Current concepts in therapeutic strategies targeting cognitive decline and disease modification in Alzheimer’s disease. J Am Soc Exp Neuro Thers 2005;2:612-26.

10. Miyamoto E. Molecular mechanism of neuronal plasticity: Induction and maintenance of long term potentiation in the hippocampus. J Pharmacol Sci 2006;100:433-42.

11. Cai D, Qiu J, Cao Z. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci 2001;21:4731-9.

12. Frey U, Huang YY, Kandel ER. Effects of cAMP simulates a late stage of LTP in hippocampal CA1 neurons. Science 1993;260:1661-4.

13. Cammarota M, Bevilaqua LR, Rossato JI, Ramirez M, Medina JH, Izquierdo I. Relationship between short- and long-term memory and short- and long-term extinction. Neurobiol Learn Mem 2005;84(1):25-32.

14. Yao WD, Rusch J, Poo MM, Wu CF. Spontaneous acetylcholine secretion from developing growth cones of Drosophila central neurons in culture: Effects of cAMP-pathway mutations. J Neuroscience 2000;20:2626-2637.

15. Nagakura A, Niimura M, Takeo S. Effects of a Phosphodiesterase IV inhibitor rolipram on microsphere embolism-induced defects in memory function and cerebral cyclic AMP signal transduction system in rats. Br J Pharmacol 2002;135:1783-94.

16. Zhou X, Xiao-Wei D, Crona J. Vinpocetine is a potent blocker of rat NaV1.8 TTX-resistant sodium channels. J Pharm Exp Ther 2003;306:498-504.

17. Euler MV, Bendel O, Bueters T. Profound but transient deficits in learning and memory after global ischemia using novel water maze test. Behav Brain Res 2006;166:204-10.

18. Francois M, Le CV, Dupont MA. Induction of necrosis in human neutrophils by Shigella flexneri requires Type III secretion, IpaB and IpaC invasins, and actin polymerization. Infect Immun 2000;68:1289-96.

19. Finkbeiner S. CREB couples neurotrophin signals to survival messages. Neuron 2000;25:11-4.

20. Fujita M, Zoghbi TS, Crescenzo MS. Quantification of brain phosphodiesterase 4 in rat with (R)-[11C]Rolipram-PET. NeuroImage 2005;26:1201-10.

21. Chong YH, Shin YJ, Suh YH. Cyclic AMP inhibition of tumor necrosis factor production induced by amuloidigenic c-Terminal peptide of alzheimer’s Amyloid precursor protein in macrophages: Involvement of multiple pathways and cyclic AMP response element-binding protein. Mol Pharmacol 2003;63:690-8.

22. Nakamura Y. Regulating factors for microglial activation. Biol Pharm Bull 2002;25:945-53.

23. Bishop JE, Joshi G, Mueller GP. Localization of putative calcium-response regions in the rat BDNF gene. Mol Brain Res 1997;50:154-60.

24. Rutten K, Lieben C, Smits L. The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat. Psychopharmacol Press 2007;192:275-82.

25. Imanishi T, Sawa A, Ichimaru Y. Ameliorating effects of rolipram on experimentally induced impairments of learning and memory in rodents. Eur J Pharmacol 1997;321:273-8.

26. Rutten K, Prickaerts J, Hendrix M. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: Studies using selective phosphodiesterase Type 2, 4 and 5 inhibitors. Eur J Pharmacol 2007;558:107-12.

27. Prickaert J, Sik A, van Staveren WC, Koopmans G, Steinbusch HW, van der Staay FJ. Phosphodiesterase Type 5 inhibition improves early memory consolidation of object information. Neurochem Int 2004;45:915-28.

28. Rutten K, Prickaerts J, Blokland A. Rolipram reverses scopolamine-induced and time-dependent memory deficits in object recognition by different mechanisms of action. Neurobiol Learn Mem 2006;85:132-8.

29. Rydel RE, Greenet LA. cAMP analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor (neurotrophic agents/neuronal regeneration/neuronal differentiaion/8-(4- chlorophenylthio)-cAMP/8-bromo-cAMP). Proc Natl Acad Sci 1998;85:1257-61.

30. Bodison SC. Developmental dyspraxia and the play skills of children with autism. Am J Occup Ther 2015;69:1-10.

31. Mark HL, Bodfish JW. Repetitive behavior disorders in autism. Mental retardation and developmental. Disabil Res Rev 1998;4:80-9.

32. Persico AM, Napolioni V. Autism genetics. Behav Brain Res 2013;251:95-112.

33. Lamar M, Cutter WJ, Rubia K, Brammer M, Daly EM, Craig MC. 5-HT, prefrontal function and aging: Functional MRI of inhibition and acute tryptophan depletion. Neurobiol Aging 2009;30:1135-46.

34. Zafeiriou DI, Ververi A, Vargiami E. The serotonergic system: Its role in pathogenesis and early developmental treatment of autism. Curr Neuropharmacol 2009;7:150-7.

35. Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 1999;45:287-95.

36. Anderson GM, Hertzig ME, McBride PA. Brief report: Platelet-poor plasma serotonin in autism. J Autism Dev Disord 2012;42:1510-4.

37. Burgess NK, Sweeten TL, McMahon WM, Fujinami RS. Hyperserotoninemia and altered immunity in autism. J Autism Dev Disord 2006;36:697-704.

38. Kumar P, Kumar A. Protective effect of rivastigmine against 3-nitropropionic acid-induced Huntington’s disease like symptoms: Possible behavioural, biochemical and cellular alterations. Eur J Pharmacol 2009;615:91-101.

39. Singh S, Jamwal S, Kumar P. Piperine enhances the protective effect of curcumin against 3-NP induced neurotoxicity: Possible neurotransmitters modulation mechanism. Neurochem Res 2015;40:1758-66.

40. Olsson M, Nikkhah G, Bentlage C, Bjorklund A. Forelimb akinesia in the rat Parkinson model: Differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 1995;15:3863-75.

41. Kumar P, Padi SS, Naidu PS, Kumar A. Cyclooxygenase inhibition attenuates 3-nitropropionic acid-induced neurotoxicity in rats: Possible antioxidant mechanisms. Fundam Clin Pharmacol 2007;21:297-306.

42. Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJ. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 1997;89:73-82.

43. Wills ED. Mechanism of lipid peroxide formation in animal tissue. Biochem J 1966;99:667-76.

44. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959;82:70-4.

45. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972;247:3170-5.

46. Imaki J. A developmental study of cyclic AMP response element binding protein (CREB) by in situ hybridization histochemistry and immunocytochemistry in the rat neocortex. Brain Res 1994;651:269-74.

47. Silva AJ. CREB and memory. Annu Rev Neurosci 1998;21:127-48.

48. Sottocasa GL, Kuylenstierna B, Ernster L, Berqstrand A. An electrontransport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol 1967;32:415-38.

49. Ellman GL, Courtney KD, Anders V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-94.

50. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990;186:464-78.

51. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982;126:131-8.

52. Sassone-Corsi P. The cyclic AMP pathway. Cold Spring Harb Perspect Biol 2012;4:1-19.

53. Molinari G. Pathogenesis of secondary brain hemorrhage after ischemia: Lessons from animal models and a few from man, too! Thrombolytic Therapy in Acute Ischemic Stroke. Berlin: Springer-Verlag; 1993. p. 29-36.

54. Chauhan A, Gu F, Essa MM, Wegiel J, Kaur K, Brown WT. Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem 2011;117:209-20.

55. MacFabe DF, Rodriguez-Capote K, Hoffman JE. A novel rodent model of autism: Intraventricular infusions of propionic acid increase locomotor activity and induce neuroinflammation and oxidative stress in discrete regions of adult rat brain. Am J Biochem Biotechnol 2008;4:146-66.