Pages: 37-43

Date of Publication: 14-Jun-2022

Smart nanocarriers: A novel tool for the treatment of ulcerative colitis

Author: Amandeep Singh, Gurmeet Singh, Uttam Kumar Mandal, Raj Kumar Narang

Category: Pharmaceutics

[Download PDF]


Colitis nanotherapeutics are quickly succeeding and are utilized to sort out numerous restrictions of conventional drug delivery systems such as drug targeting and non-specific distribution with reduced oral bioavailability. Advancement in medical science has put into novel strategies for targeting approaches that may converse new anticipate for ulcerative colitis patients. Numerous beneficial nanocarriers have been commending for clinical use. Nanocarriers have been intended for finest size and surface characteristics to improve their targeting for desired site. Using the pathophysiology of colitis, as an identification marker, their improved permeability and retention effect nanotherapeutics are able to hold loaded active drug to colitis site. In addition, side effects of drugs can also be conquer or reduced using nanocarriers. These nanocarriers are now being vigorously investigated and are on the perspective as the latest generation.

Keywords: Ulcerative colitis, novel drug delivery system, smart carrier, drug targeting, sustain release


1. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 2018;11:1-0.

2. Head KA, Jurenka JS. Inflammatory bowel disease Part I: Ulcerative colitispathophysiology and conventional and alternative treatment options. Altern Med Rev 2003;8:247-83.

3. Ma P, Si X, Chen Q, Ma L, Hou M, Xu Z, et al. Oral drug delivery systems for ulcerative colitis therapy: A comparative study with microparticles and nanoparticles. Curr Cancer Drug Targets 2019;19:304-11.

4. Vass P, Démuth B, Hirsch E, Nagy B, Andersen SK, Vigh T, et al. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release 2019;296:162-78.

5. Singh A, Rath G, Singh R, Goyal AK. Nanofibers: An effective tool for controlled and sustained drug delivery. Curr Drug Deliv 2018;15:155-66.

6. Zhou J, O’Keeffe M, Liao G, Zhao F, Terhorst C, Xu B. Design and synthesis of nanofibers of self-assembled de novo glycoconjugates towards mucosal lining restoration and anti-inflammatory drug delivery. Tetrahedron 2016;72:6078-83.

7. Akhgari A, Heshmati Z, Makhmalzadeh BS. Indomethacin electrospun nanofibers for colonic drug delivery: Preparation and characterization. Adv Pharm Bull 2013;3:85.

8. Tabuchi R, Anraku M, Iohara D, Ishiguro T, Ifuku S, Nagae T, et al. Surfacedeacetylated chitin nanofibers reinforced with a sulfobutyl ether β-cyclodextrin gel loaded with prednisolone as potential therapy for inflammatory bowel disease. Carbohydr Polym 2017;174:1087-94.

9. Periasamy S, Lin CH, Nagarajan B, Sankaranarayanan NV, Desai UR, Liu MY. Tamarind xyloglucan attenuates dextran sodium sulfate induced ulcerative colitis: Role of antioxidation. J Funct Foods 2018;42:327-38.

10. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv Drug Deliv Rev 2012;64:557-70.

11. Melo M, Nunes R, Sarmento B, Neves J. Rectal administration of nanosystems: From drug delivery to diagnostics. Mater Today Chem 2018;10:128-41.

12. Peterson B, Weyers M, Steenekamp JH, Steyn JD, Gouws C, Hamman JH. Drug bioavailability enhancing agents of natural origin (bioenhancers) that modulate drug membrane permeation and pre-systemic metabolism. Pharmaceutics 2019;11:33.

13. Sinha SR, Nguyen LP, Inayathullah M, Malkovskiy A, Habte F, Rajadas J, et al. A thermo-sensitive delivery platform for topical administration of, inflammatory bowel disease therapies. Gastroenterology 2015;149:52-5.

14. Zhang S, Ermann J, Succi MD, Zhou A, Hamilton MJ, Cao B, et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci Transl Med 2015;12:128-43.

15. Zhai J, Mantaj J, Vllasaliu D. Ascorbyl palmitate hydrogel for local, intestinal delivery of macromolecules. Pharmaceutics 2018;10:188.

16. Pehlivaner MO. Sprayable Thermoresponsive Hydrogels for Minimally Invasive Treatment of Bowel Diseases. Massachusetts: Northeastern University; 2018.

17. Purohit TJ, Hanning SM, Wu Z. Advances in rectal drug delivery systems. Pharm Dev Technol 2018;23:942-52.

18. Schmelzer M, Schiller LR, Meyer R, Rugari SM, Case P. Safety and effectiveness of large-volume enema solutions. Appl Nurs Res 2004;17:265-74.

19. Oliva S, Di Nardo G, Ferrari F, Mallardo S, Rossi P, Patrizi G, et al. Randomised clinical trial: The effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment Pharmacol Ther 2012;35:327-34.

20. Garcíam FG, Hinojosa J, Mateu PN. Budesonide and inflammatory bowel disease. Gastroenterol Hepatol 1999;22:525-32.

21. Lemann M, Galian A, Rutgeerts P, Heuverzwijn RV, Cortot A, Viteau JM, et al. Comparison of budesonide and 5-aminosalicylic acid enemas in active distal ulcerative colitis. Aliment Pharmacol Ther 1995;9:557-62.

22. Hartmann F, Stein J, BudMesa-Study Group. Clinical trial: Controlled, open, randomized multicentre study comparing the effects of treatment on quality of life, safety and efficacy of budesonide or mesalazine enemas in active left-sided ulcerative colitis. Aliment Pharmacol Ther 2010;32:368-76.

23. Singh A, Kaur K, Kaur V, Singh G, Mandal UK, Mishra N, et al. Importance of nanocarriers and probiotics in the treatment of ulcerative colitis. J Drug Deliv Ther 2019;15:216-28.

24. Sharma A, Kaur N, Sharma S, Sharma A, Rathore MS, Ajay K, et al. Embelinloaded guar gum microparticles for the management of ulcerative colitis. J Microencapsul 2018;35:181-91.

25. Nidhi S, Dadwal A, Hallan SS, Sharma S. Mishra N. Development of entericcoated microspheres of embelin for their beneficial pharmacological potential in ulcerative colitis. Artif Cells Nanomed Biotechnol 2017;45:1092-100.

26. Badhana S, Garud N, Garud A. Colon specific drug delivery of mesalamine using eudragit S100-coated chitosan microspheres for the treatment of ulcerative colitis. Int Curr Pharm J 2013;2:42-8.

27. Varshosaz J, Dehkordi AJ, Golafshan S. Colon-specific delivery of mesalazine chitosan microspheres. J Microencapsul 2006;23:329-39.

28. Kaur K, Singh A, Sidhu YS, Narang RK, Sandhu NK, Rana S. Advances in combination of quantum dots and nanotechnology-based carrier systems against cancer-a critical review. Int J Bio Pharma Res 2019;8:2814-25.

29. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013;8:102-8.

30. Gupta AS, Kshirsagar SJ, Bhalekar MR, Saldanha T. Design and development of liposomes for colon targeted drug delivery. J Drug Target 2013;21:146-60.

31. Rozga J. The role of reactive oxygen metabolites in the pathogenesis of ulcerative colitis: A speculative synthesis. Mater Med Pol 1989;21:263-8.

32. Jubeh TT, Antler S, Haupt S, Barenholz Y, Rubinstein A. Local prevention of oxidative stress in the intestinal epithelium of the rat by adhesive liposomes of superoxide dismutase and tempamine. Mol Pharm 2005;7:2-11.

33. Zhang JX, Wang K, Mao ZF, Fan X, Jiang DL, Chen M. Application of liposomes in drug development-focus on gastroenterological targets. Int J Nanomed 2013;8:1325.

34. Tirosh B, Khatib N, Barenholz Y, Nissan A, Rubinstein A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol Pharm 2009;15:1083-91.

35. Poh S, Chelvam V, Ayala-López W, Putt KS. Selective liposome targeting of folate receptor positive immune cells in inflammatory diseases. Nanomed Nanotechnol Biol Med 2018;14:1033-43.

36. Dunuweera SP, Rajapakse RM, Rajapakshe RB, Wijekoon SH, Thilakarathna N, Sasanka MG. et al. Review on targeted drug delivery carriers used in nanobiomedical applications. Curr Nanosci 2019;15:382-97.

37. Bhatt H, Rompicharla SV, Ghosh B, Biswas S. α-tocopherol succinate anchored PEGylated poly (amidoamine) dendrimer for the delivery of paclitaxel: Assessment of in vitro and in-vivo therapeutic efficacy. Mol Pharm 2019;16:1541-54.

38. Shaunak S, Thomas S, Gianasi E, Godwin A, Jones, Teo E, et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 2004;22:977.

39. Ehrchen J, Steinmüller L, Barczyk K, Tenbrock K, Nacken W, Eisenacher M, et al. Glucocorticoids induce differentiation of a specifically activated, antiinflammatory subtype of human monocytes. Blood 2007;109:1265-74.

40. Manna S, Ghosh M, Chakraborty R, Ghosh S, Mandal SM. A review on quantum dots: Synthesis to in-silico analysis as next generation antibacterial agents. Curr Drug Targets 2019;20:255-62.

41. Karwa A, Papazoglou E, Pourrezaei K, Tyagi S, Murthy S. Imaging biomarkers of inflammation in situ with fun ctionalized quantum dots in the dextran sodium sulfate (DSS) model of mouse colitis. Inflamm Res 2007;56:502-10.

42. Yang F, Zhang X, Song L, Cui H, Myers J, Bai T, et al. Controlled drug release and hydrolysis mechanism of polymer-magnetic nanoparticle composite. ACS Appl Mater Interfaces 2015;29:9410-9.

43. Yue-Jian C, Juan T, Fei X, Jia-Bi Z, Ning G, Yi-Hua Z, et al. Synthesis, selfassembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Dev Ind Pharm 2010;36:1235-44.