<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd">
<ArticleSet>
  <Article>
    <Journal>
      <PublisherName>isfcppharmaspire</PublisherName>
      <JournalTitle>Pharmaspire</JournalTitle>
      <PISSN>C</PISSN>
      <EISSN>o</EISSN>
      <Volume-Issue>Volume 15, Issue 04, 2023</Volume-Issue>
      <PartNumber/>
      <IssueTopic>Multidisciplinary</IssueTopic>
      <IssueLanguage>English</IssueLanguage>
      <Season>October-December</Season>
      <SpecialIssue>N</SpecialIssue>
      <SupplementaryIssue>N</SupplementaryIssue>
      <IssueOA>Y</IssueOA>
      <PubDate>
        <Year>2024</Year>
        <Month>02</Month>
        <Day>17</Day>
      </PubDate>
      <ArticleType>Pharmacology</ArticleType>
      <ArticleTitle>Apigenin: Exploring its neuroprotective potential in neurodegenerative disorders: Mechanisms and promising therapeutic applications</ArticleTitle>
      <SubTitle/>
      <ArticleLanguage>English</ArticleLanguage>
      <ArticleOA>Y</ArticleOA>
      <FirstPage>257</FirstPage>
      <LastPage>263</LastPage>
      <AuthorList>
        <Author>
          <FirstName>Anjalee</FirstName>
          <LastName>Bhratee</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>N</CorrespondingAuthor>
          <ORCID/>
          <FirstName>Piyush</FirstName>
          <LastName>Anand</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>Y</CorrespondingAuthor>
          <ORCID/>
          <FirstName>Shamsher</FirstName>
          <LastName>Singh</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>Y</CorrespondingAuthor>
          <ORCID/>
        </Author>
      </AuthorList>
      <DOI>10.56933/Pharmaspire.2023.15138</DOI>
      <Abstract>Neurodegenerative diseases pose significant challenges to global health-care systems, highlighting the urgent need for effective therapeutic strategies. Apigenin (API), a natural compound derived from various plant sources, has emerged as a potential treatment option due to its neuroprotective properties. This review article provides a comprehensive overview of API, focusing on its definition, natural sources, pharmacokinetics, and bioavailability, mechanisms of action, safety, and tolerability profile. API protects neurons in many ways, including its antioxidant activity, anti-inflammatory properties, ability to change cellular signaling pathways, ability to stop proteins from misfolding and sticking together, and ability to improve mitochondrial function. In vitro studies have demonstrated that API attenuates oxidative stress, inhibits the formation of protein aggregates, and suppresses neuroinflammation. Animal models, such as transgenic mice, rat models, and non-human primates, have provided valuable insights into the potential therapeutic benefits of API, including improved cognitive function, mitigation of motor impairments, and preservation of neuronal integrity. API’s safety and tolerability profile appears favorable based on preclinical and clinical studies, with minimal reported adverse effects. However, further investigation is required to determine optimal dosing regimens and assess potential drug interactions. In addition, while current treatment options for neurodegenerative diseases primarily focus on symptom management, API holds promise as a disease-modifying agent.</Abstract>
      <AbstractLanguage>English</AbstractLanguage>
      <Keywords>Animal models, Apigenin, Neurodegenerative diseases, Neuroprotection mechanisms of action, Preclinical studies, Safety, and tolerability, Therapeutic potential pathophysiology, Treatment options</Keywords>
      <URLs>
        <Abstract>https://isfcppharmaspire.com/ubijournal-v1copy/journals/abstract.php?article_id=15072&amp;title=Apigenin: Exploring its neuroprotective potential in neurodegenerative disorders: Mechanisms and promising therapeutic applications</Abstract>
      </URLs>
      <References>
        <ReferencesarticleTitle>References</ReferencesarticleTitle>
        <ReferencesfirstPage>16</ReferencesfirstPage>
        <ReferenceslastPage>19</ReferenceslastPage>
        <References>1. Marchesi N, Fahmideh F, Boschi F, Pascale A, Barbieri A. Ocular neurodegenerative diseases: Interconnection between retina and cortical areas. Cells 2021;10:2394.&#13;
2. Benatar M, Wuu J, McHutchison C, Postuma RB, Boeve BF, Petersen R, et al. Preventing amyotrophic lateral sclerosis: Insights from pre-symptomatic neurodegenerative diseases. Brain 2022;145:27-44.&#13;
3. Perneczky R. Dementia prevention and reserve against neurodegenerative disease. Dialogues Clin Neurosci 2019;21:53-60.&#13;
4. Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, et al. Mechanisms of mitochondrial dysfunction and their impact on agerelated macular degeneration. Prog Retin Eye Res 2020;79:100858.&#13;
5. Logroscino G, Imbimbo BP, Lozupone M, Sardone R, Capozzo R, Battista P, et al. Promising therapies for the treatment of frontotemporal dementia clinical phenotypes: from symptomatic to disease-modifying drugs. Expert Opin Pharmacother 2019;20:1091-107.&#13;
6. Nabavi SF, Khan H, D’onofrio G, and;Scaron;amec D, Shirooie S, Dehpour AR, et al. Apigenin as neuroprotective agent: Of mice and men. Pharmacol Res 2018;128:359-65.&#13;
7. Oyenihi OR, Oyenihi AB, Alabi TD, Tade OG, Adeyanju AA, Oguntibeju OO. Reactive oxygen species: Key players in the anticancer effects of apigenin? J Food Biochem 2022;46:e14060.&#13;
8. Ginwala R, Bhavsar R, Chigbu DG, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the antiinflammatory activity of apigenin. Antioxidants (Basel) 2019;8:35.&#13;
9. Alam W, Rocca C, Khan H, Hussain Y, Aschner M, De Bartolo A, et al. Current status and future perspectives on therapeutic potential of apigenin: Focus on metabolicsyndrome-dependent organ dysfunction. Antioxidants (Basel) 2021;10:1643.&#13;
10. Bilska K, Stuper-Szablewska K, Kulik T, Bu?ko M, Za?uski D, Jurczak S, et al. Changes in phenylpropanoid and trichothecene production by Fusarium culmorum and F. graminearum sensu stricto via exposure to flavonoids. Toxins 2018;10:110.&#13;
11. Karak P. Biological activities of flavonoids: An overview. Int J Pharm Sci Res 2019;10:1567-74.&#13;
12. Devi S, Kumar V, Singh SK, Dubey AK, Kim JJ. Flavonoids: Potential candidates for the treatment of neurodegenerative disorders. Biomedicines 2021;9:99.&#13;
13. Brglez Mojzer E, Knez Hrn?i? M, and;Scaron;kerget M, Knez Ž, Bren U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016;21:901.&#13;
14. Brglez Mojzer E, Knez Hrn?i? M, and;Scaron;kerget M, Knez Ž, Bren U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016;21:901.&#13;
15. Salehi B, Venditti A, Sharifi-Rad M, Kr?giel D, SharifiRad J, Durazzo A, et al. The therapeutic potential of apigenin. Int J Mol Sci 2019;20:1305.&#13;
16. Chen X, Chen Y, Liu Y, Zou L, McClements DJ, Liu W. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Compr Rev Food Sci Food Saf 2022;21:3963-4001.&#13;
17. Veland;aacute;squez-Jimand;eacute;nez D, Corella-Salazar DA, Zuand;ntilde;iga-Martand;iacute;nez BS, Domand;iacute;nguez-Avila JA, MontielHerrera M, Salazar-Land;oacute;pez NJ, et al. Phenolic compounds that cross the blood–brain barrier exert positive health effects as central nervous system antioxidants. Food Funct 2021;12:10356-69.&#13;
18. Miron A, Aprotosoaie AC, Trifan A, Xiao J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann N Y Acad Sci 2017;1398:152-67.&#13;
19. Cui YF, Zhang WW, Li YN, Xu J, Lan XM, Song SY, et al. The analytical strategy of “ion induction and deduction based on net-hubs” for the comprehensive characterization of naringenin metabolites in vivo and in vitro using a UHPLC-Q-exactive orbitrap mass spectrometer. Molecules 2022;27:7282.&#13;
20. Truzzi F, Tibaldi C, Zhang Y, Dinelli G, D’Amen E. An overview on dietary polyphenols and their biopharmaceutical classification system (BCS). Int J Mol Sci 2021;22:5514.&#13;
21. Khan H, Ullah H, Martorell M, Valdes SE, Belwal T, Tejada S, et al. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin Cancer Biol 2021;69:200-11.&#13;
22. Jangdey MS, Gupta A, Sarwa K. Apigenin and quercetin: Potential therapeutic challenging effective against in Alzheimer’s disease. Pharm Biosci J 2018;6:46-51.&#13;
23. Zaplatic E, Bule M, Shah SZ, Uddin MS, Niaz K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimers disease. Life Sci 2019;224:109-19.&#13;
24. Abid R, Ghazanfar S, Farid A, Sulaman SM, Idrees M, Amen RA, et al. Pharmacological properties of 4’, 5, 7-trihydroxyflavone (Apigenin) and its impact on cell signaling pathways. Molecules 2022;27:4304.&#13;
25. Wang D, Yang Y, Zou X, Zheng Z, Zhang J. Curcumin ameliorates CKD-induced mitochondrial dysfunction and oxidative stress through inhibiting GSK-3and;beta; activity. J Nutr Biochem 2020;83:108404.&#13;
26. Kumar P, Mahato DK, Kamle M, Borah R, Sharma B, Pandhi S, et al. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother Res 2021;35:6010-29.&#13;
27. Guven H, Arici A, Simsek O. Flavonoids in our foods: A short review. J Basic Clin Health Sci 2019;3:96-106.&#13;
28. Gonzalez C, Armijo E, Bravo-Alegria J, Becerra-Calixto A, Mays CE, Soto C. Modeling amyloid beta and tau pathology in human cerebral organoids. Mol Psychiatry 2018;23:2363-74.&#13;
29. Yarnall A, Archibald N, Burn D. Parkinson’s disease. Medicine 2012;40:529-35.&#13;
30. Heo J, Lee J, Nam YJ, Kim Y, Yun H, Lee S, et al. The CDK1/TFCP2L1/ID2 cascade offers a novel combination therapy strategy in a preclinical model of bladder cancer. Exp Mol Med 2022;54:801-11.&#13;
31. Andhavarapu S, Katuri A, Bryant J, Patel V, Gupta U, Asemu G, et al. Intersecting roles of ER stress, mitochondrial dysfunction, autophagy, and calcium homeostasis in HIV-associated neurocognitive disorder. J Neurovirol 2020;26:664-75.&#13;
32. Zhuang X, Mazzoni P, Kang UJ. The role of neuroplasticity in dopaminergic therapy for Parkinson disease. Nat Rev Neurol 2013;9:248-56.&#13;
33. Wang N, Yi WJ, Tan L, Zhang JH, Xu J, Chen Y, et al. Apigenin attenuates streptozotocin-induced pancreatic and;beta; cell damage by its protective effects on cellular antioxidant defense. In Vitro Cell Dev Biol Anim 2017;53:554-63.&#13;
34. Nand;uacute;and;ntilde;ez-Sand;aacute;nchez MA, Gonzand;aacute;lez-Sarrand;iacute;as A, Romo-Vaquero M, Garcand;iacute;a-Villalba R, Selma MV, Tomand;aacute;s-Barberand;aacute;n FA, et al. Dietary phenolics against colorectal cancer--From promising preclinical results to poor translation into clinical trials: Pitfalls and future needs. Mol Nutr Food Res 2015;59:1274-91.</References>
      </References>
    </Journal>
  </Article>
</ArticleSet>