<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd"> <ArticleSet> <Article> <Journal> <PublisherName>isfcppharmaspire</PublisherName> <JournalTitle>Pharmaspire</JournalTitle> <PISSN>C</PISSN> <EISSN>o</EISSN> <Volume-Issue>Volume 15, Issue 04, 2023</Volume-Issue> <PartNumber/> <IssueTopic>Multidisciplinary</IssueTopic> <IssueLanguage>English</IssueLanguage> <Season>October-December</Season> <SpecialIssue>N</SpecialIssue> <SupplementaryIssue>N</SupplementaryIssue> <IssueOA>Y</IssueOA> <PubDate> <Year>2024</Year> <Month>02</Month> <Day>17</Day> </PubDate> <ArticleType>Pharmaceutics</ArticleType> <ArticleTitle>Developing non-viral or viral vectors for efficient and targeted delivery of genetic material, such as DNA or RNA, for gene therapy applications</ArticleTitle> <SubTitle/> <ArticleLanguage>English</ArticleLanguage> <ArticleOA>Y</ArticleOA> <FirstPage>243</FirstPage> <LastPage>256</LastPage> <AuthorList> <Author> <FirstName>Abhishek</FirstName> <LastName>Verma</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>N</CorrespondingAuthor> <ORCID/> <FirstName>Ankit</FirstName> <LastName>Awasthi</LastName> <AuthorLanguage>English</AuthorLanguage> <Affiliation/> <CorrespondingAuthor>Y</CorrespondingAuthor> <ORCID/> </Author> </AuthorList> <DOI>10.56933/Pharmaspire.2023.15137</DOI> <Abstract>Gene therapy has emerged as a promising approach for treating a wide range of genetic and acquired diseases by introducing or modifying genetic material within cells. To achieve successful gene therapy, efficient and precise delivery of genetic material, such as DNA or RNA, to target cells is essential. This abstract explores the development of both non-viral and viral vectors for the delivery of genetic material in gene therapy applications. Non-viral vectors, including lipid nanoparticles (LNPs), polymer-based carriers, and cell-penetrating peptides, have gained significant attention due to their safety profile and ease of production. These vectors are designed to protect genetic material from degradation, facilitate cellular uptake, and release the cargo at the desired location. Recent advancements in nanotechnology have enabled the design of customizable non-viral vectors with enhanced delivery efficiency and reduced off target effects. Viral vectors, on the other hand, harness the natural infectivity of viruses to transport genetic material into target cells. Retroviruses, lentiviruses, adenoviruses, and adeno-associated viruses (AAVs) are commonly used viral vectors in gene therapy. Viral vectors offer high transduction efficiency but may trigger immune responses or pose risks of insertional mutagenesis. Efforts in vector engineering have led to the development of safer viral vectors with improved targeting capabilities and reduced immunogenicity. AAVs, in particular, have gained prominence due to their ability to achieve long-lasting gene expression with minimal adverse effects. Targeted delivery strategies aim to enhance vector specificity, ensuring that genetic material reaches the intended cell type or tissue. These strategies include modifying vector surface proteins, employing tissue-specific promoters, or utilizing ligand-receptor interactions. In conclusion, the successful application of gene therapy relies on the development of efficient and targeted delivery systems for genetic material. Non-viral and viral vectors offer distinct advantages and continue to evolve to meetthe demands of gene therapy applications. Advances in vector design, safety, and targeting strategies hold promise for the continued progress of gene therapy as a transformative medical intervention.</Abstract> <AbstractLanguage>English</AbstractLanguage> <Keywords>DNA, Gene, Non-viral, RNA, Targeted delivery, Viral</Keywords> <URLs> <Abstract>https://isfcppharmaspire.com/ubijournal-v1copy/journals/abstract.php?article_id=15071&title=Developing non-viral or viral vectors for efficient and targeted delivery of genetic material, such as DNA or RNA, for gene therapy applications</Abstract> </URLs> <References> <ReferencesarticleTitle>References</ReferencesarticleTitle> <ReferencesfirstPage>16</ReferencesfirstPage> <ReferenceslastPage>19</ReferenceslastPage> <References>1. Athanasopoulos T, Munye MM, Yand;aacute;and;ntilde;ez-Muand;ntilde;oz RJ. Nonintegrating gene therapy vectors. Hematol Oncol Clin North Am 2017;31:753-70. 2. Shinkuma S. Advances in gene therapy and their application to skin diseases: A review. J Dermatol Sci 2021;103:2-9. 3. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000;288:669-72. 4. Baum C, Dand;uuml;llmann J, Li Z, Fehse B, Meyer J, Williams DA, et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003;101:2099-114. 5. Raper SE, Yudkoff M, Chirmule N, Gao GP, Nunes F, Haskal ZJ, et al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 2002;13:163-75. 6. Wahane A, Waghmode A, Kapphahn A, Dhuri K, Gupta A, Bahal R. Role of lipid-based and polymer-based nonviral vectors in nucleic acid delivery for next-generation gene therapy. Molecules 2020;25:2866. 7. Kay MA. State-of-the-art gene-based therapies: The road ahead. Nat Rev Genet 2011;12:316-28. 8. Lin Y, Wang X, He S, Duan Z, Zhang Y, Sun X, et al. Immunostimulatory gene therapy combined with checkpoint blockade reshapes tumor microenvironment and enhances ovarian cancer immunotherapy. Acta Pharm Sin B 2023;14:854-68. 9. Mei Y, Qin X, Yang Z, Song S, Liu X, Wu C, et al. Engineered a dual-targeting HA-TPP/A nanoparticle for combination therapy against KRAS-TP53 co-mutation in gastrointestinal cancers. Bioact Mater 2024;32:277-91. 10. Lan B, Zhang L, Yang L, Wu J, Li N, Pan C, et al. Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J Nanobiotechnology 2021;19:130. 11. Lan B, Wu J, Li N, Pan C, Yan L, Yang C, et al. Hyperbranched cationic polysaccharide derivatives for efficient siRNA delivery and diabetic wound healing enhancement. Int J Biol Macromol 2020;154:855-65. 12. Fischer A, Hacein-Bey-Abina S. Gene therapy for severe combined immunodeficiencies and beyond. J Exp Med 2019;217:e20190607. 13. Leebeek FW, Miesbach W. Gene therapy for hemophilia: A review on clinical benefit, limitations, and remaining issues. Blood 2021;138:923-31. 14. Antony JS, Daniel-Moreno A, Lamsfus-Calle A, Raju J, Kaftancioglu M, Ureand;ntilde;a-Bailand;eacute;n G, et al. A mutationagnostic hematopoietic stem cell gene therapy for metachromatic leukodystrophy. CRISPR J 2022;5:66-79. 15. Ali HG, Ibrahim K, Elsaid MF, Mohamed RB, Abeidah MIA, Al Rawwas AO, et al. Gene therapy for spinal muscular atrophy: The Qatari experience. Gene Ther 2021;28:676-80. 16. Coquerelle S, Ghardallou M, Rais S, Taupin P, Touzot F, Boquet L, et al. Innovative curative treatment of beta thalassemia: Cost-efficacy analysis of gene therapy Versus allogenic hematopoietic stem-cell transplantation. Hum Gene Ther 2019;30:753-61. 17. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014;15:541-55. 18. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med 2013;15:65-77. 19. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005;4:581-93. 20. Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev 2009;109:259-302. 21. Fraley R, Subramani S, Berg P, Papahadjopoulos D. Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem 1980;255:10431-5. 22. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145-60. 23. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: A highly efficient, lipid mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 1987;84:7413-7. 24. Gao H, Hui KM. Synthesis of a novel series of cationic lipids that can act as efficient gene delivery vehicles through systematic heterocyclic substitution of cholesterol derivatives. Gene Ther 2001;8:855-63. 25. Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006;114:100-9. 26. Hattori Y, Suzuki S, Kawakami S, Yamashita F, Hashida M. The role of dioleoylphosphatidylethanolamine (DOPE) in targeted gene delivery with mannosylated cationic liposomes via intravenous route. J Control Release 2005;108:484-95. 27. Semple SC, Chonn A, Cullis PR. Influence of cholesterol on the association of plasma proteins with liposomes. Biochemistry 1996;35:2521-5. 28. Barenholz Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J Control Release 2012;160:117-34. 29. Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev 2016;99:129-37. 30. Filion MC, Phillips NC. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta 1997;1329:345-56. 31. Laemmli UK. Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proc Natl Acad Sci U S A 1975;72:4288-92. 32. Choi YH, Liu F, Kim JS, Choi YK, Park JS, Kim SW. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J Control Release 1998;54:39-48. 33. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008;5:505-15. 34. Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 2022;188:114416. 35. Schraa AJ, Kok RJ, Moorlag HE, Bos EJ, Proost JH, Meijer DK, et al. Targeting of RGD-modified proteins to tumor vasculature: A pharmacokinetic and cellular distribution study. Int J Cancer 2002;102:469-75. 36. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998;279:377-80. 37. Shegokar R, Mand;uuml;ller RH. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 2010;399:129-39. 38. Lim SB, Banerjee A, and;Ouml;nyand;uuml;ksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 2012;163:34-45. 39. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008;14:1310-6. 40. Di Costanzo F, Gasperoni S, Rotella V, Di Costanzo F. Targeted delivery of albumin bound paclitaxel in the treatment of advanced breast cancer. Onco Targets Ther 2009;2:179-88. 41. Tangney M. Gene therapy for cancer: Dairy bacteria as delivery vectors. Discov Med 2010;10:195-200. 42. Santana-Armas ML, Tros de Ilarduya C. Strategies for cancer gene-delivery improvement by non-viral vectors. Int J Pharm 2021;596:120291. 43. Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: A dose escalation, open-label, phase ½ trial. Lancet 2014;383:1138-46. 44. Salegio EA, Samaranch L, Kells AP, Mittermeyer G, San Sebastian W, Zhou S, et al. Axonal transport of adenoassociated viral vectors is serotype-dependent. Gene Ther 2013;20:348-52. 45. Sinn PL, Sauter SL, McCray PB Jr. Gene therapy progress and prospects: Development of improved lentiviral and retroviral vectors-design, biosafety, and production. Gene Ther 2005;12:1089-98. 46. Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther 2017;24:233-43. 47. Lynch JP 3rd, Fishbein M, Echavarria M. Adenovirus. Semin Respir Crit Care Med 2011;32:494-511. 48. Lion T. Adenovirus infections in immunocompetent and immunocompromised patients. Clin Microbiol Rev 2014;27:441-62. 49. Hidalgo P, Gonzalez RA. Formation of adenovirus DNA replication compartments. FEBS Lett 2019;593:3518-30. 50. Meier AF, Fraefel C, Seyffert M. The interplay between adeno-associated virus and its helper viruses. Viruses 2020;12:662. 51. Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: Poised at the clinical crossroads. Mol Ther 2012;20:699-708. 52. Liu Q, Huang W, Zhang H, Wang Y, Zhao J, Song A, et al. Neutralizing antibodies against AAV2, AAV5 and AAV8 in healthy and HIV-1-infected subjects in China: Implications for gene therapy using AAV vectors. Gene Ther 2014;21:732-8. 53. Sirihongthong T, Jitobaom K, Phakaratsakul S, Boonarkart C, Suptawiwat O, Auewarakul P. The relationship of codon usage to the replication strategy of parvoviruses. Arch Virol 2019;164:2479-91. 54. Buller RM, Janik JE, Sebring ED, Rose JA. Herpes simplex virus types 1 and 2 completely help adenovirusassociated virus replication. J Virol 1981;40:241-7. 55. Whitley RJ, Kimberlin DW, Roizman B. Herpes simplex viruses. Clin Infect Dis 1998;26:541-53. 56. Weller SK, Coen DM. Herpes simplex viruses: Mechanisms of DNA replication. Cold Spring Harb Perspect Biol 2012;4:a013011. 57. Zu H, Gao D. Non-viral vectors in gene therapy: Recent development, challenges, and prospects. AAPS J 2021;23:78. 58. Patil S, Gao YG, Lin X, Li Y, Dang K, Tian Y, et al. The development of functional non-viral vectors for gene delivery. Int J Mol Sci 2019;20:5491. 59. Caffery B, Lee JS, Alexander-Bryant AA. Vectors for glioblastoma gene therapy: Viral and; non-viral delivery strategies. Nanomaterials (Basel) 2019;9:105. 60. Brandwijk RJ, Griffioen AW, Thijssen VL. Targeted gene-delivery strategies for angiostatic cancer treatment. Trends Mol Med 2007;13:200-9. 61. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649-59. 62. Abou-Jawde R, Choueiri T, Alemany C, Mekhail T. An overview of targeted treatments in cancer. Clin Ther 2003;25:2121-37. 63. Rybak JN, Trachsel E, Scheuermann J, Neri D. Ligandbased vascular targeting of disease. ChemMedChem 2007;2:22-40. 64. Yotsumoto F, Sanui A, Fukami T, Shirota K, Horiuchi S, Tsujioka H, et al. Efficacy of ligand-based targeting for the EGF system in cancer. Anticancer Res 2009;29:4879-85. 65. Wang LL, Estrada L, Wiggins J, Anantpadma M, Patten JJ, Davey RA, et al. Ligand-based design of peptide entry inhibitors targeting the endosomal receptor binding site of filoviruses. Antiviral Res 2022;206:105399. 66. Saukkonen K, Hemminki A. Tissue-specific promoters for cancer gene therapy. Expert Opin Biol Ther 2004;4:683-96. 67. Kand;uuml;gler S. Tissue-specific promoters in the CNS. Methods Mol Biol 2016;1382:81-91. 68. Zheng C, Baum BJ. Evaluation of promoters for use in tissue-specific gene delivery. Methods Mol Biol 2008;434:205-19. 69. Roth JC, Curiel DT, Pereboeva L. Cell vehicle targeting strategies. Gene Ther 2008;15:716-29. 70. Kawabata K, Migita M, Mochizuki H, Miyake K, Igarashi T, Fukunaga Y, et al. Ex vivo cell-mediated gene therapy for metachromatic leukodystrophy using neurospheres. Brain Res 2006;1094:13-23. 71. Parr AM, Kulbatski I, Tator CH. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J Neurotrauma 2007;24:835-45. 72. Poh KK, Sperry E, Young RG, Freyman T, Barringhaus KG, Thompson CA. Repeated direct endomyocardial transplantation of allogeneic mesenchymal stem cells: Safety of a high dose, “off-the-shelf”, cellular cardiomyoplasty strategy. Int J Cardiol 2007;117:360-4. 73. Puhl DL, Mohanraj D, Nelson DW, Gilbert RJ. Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Adv Drug Deliv Rev 2022;183:114161. 74. Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol 2000;18:33-7. 75. Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm 2014;459:70-83. 76. Xue HY, Guo P, Wen WC, Wong HL. Lipid-based nanocarriers for RNA delivery. Curr Pharm Des 2015;21:3140-7. 77. Cotrim AP, Baum BJ. Gene therapy: Some history, applications, problems, and prospects. Toxicol Pathol 2008;36:97-103. 78. Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF, et al. Regulatable gene expression systems for gene therapy applications: Progress and future challenges. Mol Ther 2005;12:189-211. 79. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther 2021;29:464-88. 80. Sayed N, Allawadhi P, Khurana A, Singh V, Navik U, Pasumarthi SK, et al. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci 2022;294:120375. 81. Cai X, Conley S, Naash M. Nanoparticle applications in ocular gene therapy. Vision Res 2008;48:319-24. 82. Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 2021;20:126. 83. Arabi F, Mansouri V, Ahmadbeigi N. Gene therapy clinical trials, where do we go? An overview. Biomed Pharmacother 2022;153:113324. 84. Tucci F, Galimberti S, Naldini L, Valsecchi MG, Aiuti A. A systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nat Commun 2022;13:1315. 85. Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov 2022;21:655-75. 86. Thakur S, Sinhari A, Jain P, Jadhav HR. A perspective on oligonucleotide therapy: Approaches to patient customization. Front Pharmacol 2022;13:1006304. 87. Available from: https://clinicaltrials.gov/study/NCT004 27726?cond=NCT00427726and;start=2017-12-31_2020- 10-31and;rank=1 [Last accessed on 2023 Nov 01]. 88. Available from: https://clinicaltrials.gov/study/NCT042 86815?cond=NCT04286815and;start=2017-12-31_2020- 10-31and;rank=1 [Last accessed on 2023 Nov 01]. 89. Available from: https://clinicaltrials.gov/study/NCT047 28841?cond=NCT04728841and;start=2017-12-31_2020- 10-31and;rank=1 [Last accessed on 2023 Nov 01]. 90. Available from: https://clinicaltrials.gov/study/NCT038 94852?cond=NCT03894852and;start=2017-12-31_2020- 10-31and;rank=1 [Last accessed on 2023 Nov 01]. 91. Available from: https://clinicaltrials.gov/study/NCT034 32520?cond=NCT03432520and;start=2017-12-31_2020- 10-31and;rank=1 [Last accessed on 2023 Nov 01]. 92. Available from: https://clinicaltrials.gov/study/NCT030 39751?cond=NCT03039751and;start=2017-12-31_2020- 10-31and;rank=1 [Last accessed on 2023 Nov 01]. 93. Available from: https://clinicaltrials.gov/study/NCT0331 1503?cond=NCT03311503and;start=2017-12-31_2020-10- 31and;rank=1 [Last accessed on 2023 Nov 01]. 94. Available from: https://clinicaltrials.gov/study/NCT040 93362?cond=NCT04093362and;start=2017-12-31_2020- 10-31and;rank=1 [Last accessed on 2023 Nov 01]. 95. Available from: https://clinicaltrials.gov/study/NCT042 74231?cond=NCT04274231and;start=2017-12-31_2020- 10-31and;rank=1 [Last accessed on 2023 Nov 01]. 96. Available from: https://clinicaltrials.gov/study/NCT042 73243?cond=NCT04273243and;start=2017-12-31_2020- 10-31and;rank=1 [Last accessed on 2023 Nov 01]. 97. Dromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M, et al. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 2007;13:2722-7. 98. Barbier L, Ebbers HC, Declerck P, Simoens S, Vulto AG, Huys I. The efficacy, safety, and immunogenicity of switching between reference biopharmaceuticals and biosimilars: A systematic review. Clin Pharmacol Ther 2020;108:734-55. 99. March R, Cheeseman K, Doherty M. Pharmacogenetics-legal, ethical and regulatory considerations. Pharmacogenomics 2001;2:317-27. 100. Wang W, Koren Y. Scalability planning for reconfigurable manufacturing systems. J Manuf Syst 2012;31:83-91.</References> </References> </Journal> </Article> </ArticleSet>