<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd">
      <Volume-Issue>Volume 14, Issue 03 , 2022 </Volume-Issue>
      <Season>July-September </Season>
      <ArticleTitle>Nanosponge: A review of advantages and application as promising drug carrier</ArticleTitle>
          <FirstName>Vineet Kumar</FirstName>
      <Abstract>Specific site drug is the major problem faced among researchers due to drug poor solubility in water and pharmacokinetic issues. These poorly-water soluble drugs show many problems in formulatingnthem in conventional dosage forms and the critical problem associated is its very low bioavailability.nThe development of new colloidal carrier called nanosponges has the potential to solve these problems. Nanosponges are a part of nanotechnology. Nanosponges are tiny sponges with a size of about a virus, which can be filled with a wide variety of drugs. These tiny sponges can circulate around the body until they encounter the specific target site and stick on the surface and begin to release the drug in a controlled and predictable manner. In this review article, advantages and application of nanosponges have been discussed.</Abstract>
      <Keywords>Cross-linking agent, Drug delivery, Nanosponge, Targeted delivery</Keywords>
        <Abstract>https://isfcppharmaspire.com/ubijournal-v1copy/journals/abstract.php?article_id=14331&amp;title=Nanosponge: A review of advantages and application as promising drug carrier</Abstract>
        <References>1. Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012;8:2091-9.&#13;
2. Swaminathan S, Vavia PR, Trotta F, Cavalli R, Tumbiolo S, Bertinetti L, et al. Structural evidence of differential forms of nanosponges of beta-cyclodextrinand its effect on solubilization of a model drug. J Incl Phenom Macrocycl Chem 2013;76:201-11.&#13;
3. Patel EK, Oswal RJ. Nanosponge and micro sponges: A novel drug delivery system. Int J Res Pharm Chem 2012;2:237-44.&#13;
4. Swaminathan S, Darandale S, Vavia PR. Drug delivery bioavailability-nanosponge-aided drug delivery: A closer look. Pharm Formul Qual 2012;14:12-5.&#13;
5. Shinde G, Rajesh KS, Devang B, Bangale G, Umalkar D, Virag G. Current status of colloidal system (nano range). Liposome Nanotechnol 2011:61.&#13;
6. Lembo D, Cavalli R. Nanoparticulate delivery systems for antiviral drugs. Antivir Chem Chemother 2010;21:53-70.&#13;
7. Kumar MH. Nanosponge: An innovative drug carrier system-a review. Pharm Regul Aff 2012;1:203.&#13;
8. Cavalli R, Trotta F, Tumiatti W. Cyclodextrin-based nanosponges for drug delivery. J Incl Phenom Macrocycl Chem 2006;56:209-13.&#13;
9. Swaminathan S. Studies on Novel Dosage Forms [Dissertation]. Mumbai: Mumbai University; 2006.&#13;
10. Salisbury D. Nanosponge Drug Delivery System More Effective than Direct Injection. Nashville: Vanderbilt University; 2010.&#13;
11. Vavia PR, Swaminathan S, Trotta F, Cavalli R. Applications of Nanosponges in Drug Delivery. In: Proceedings XIII International Cyclodextrin Symposium; 2006. p. 14-7.&#13;
12. Sharma R, Walker RB, Pathak K. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel. Indian J Pharm Educ 2011;45:25-31.&#13;
13. Cavalli R, Rogero CM, Mognetti B, Berta GN, Tumiatti V, Trotta F, Inventors. Sea Marconi Technologies SAS, Assignee. Cyclodextrin-based Nanosponges as a Vehicle for Antitumoral Drugs. WO20093656A1.&#13;
14. Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012;8:2091-9.&#13;
15. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech 2005;6:E329-57.&#13;
16. Allabashi R, Arkas M, Hand;ouml;rmann G, Tsiourvas D. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res 2007;41:476-86.&#13;
17. Boscolo B, Trotta F, Ghibaudi E. High catalytic performances of Pseudomonas fluorescens lipase adsorbed on a new type of cyclodextrin-based\ nanosponges. J Mol Catal B Enzym 2010;62:155-61.&#13;
18. Swaminathan S, Pastero L, Serpe L, Trotta F, Vavia P, Aquilano D, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 2010;74:193-201.&#13;
19. Trotta F, Cavalli R. Characterization and applications of new hyper-cross-linked cyclodextrins. Instrum SciTechnol 2009;16:39-48.&#13;
20. Torne S, Darandale S, Vavia P, Trotta F, Cavalli R. Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm Dev Technol 2013;18:619-25.&#13;
21. Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv 2010;17:419-25.&#13;
22. Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrinbased nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 2011;12:279-86.&#13;
23. Ayniand;eacute; I, Vauthier C, Chacun H, Fattal E, Couvreur P. Spongelike alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 1999;9:301-12.&#13;
24. Swaminathan S, Cavalli R, Trotta F, Ferruti P, Ranucci E, Gerges I, et al. In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of and;beta;-cyclodextrin. J Incl Phenom Macrocycl Chem 2010;68:183-91.&#13;
25. Rao M, Bajaj A, Khole I, Munjapara G, Trotta F. In vitro and in vivo evaluation of and;beta;-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem 2013;77:135-45.&#13;
26. Mognetti B, Barberis A, Marino S, Berta G, De Francia S, Trotta F, et al. In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. J Incl Phenom Macrocycl Chem 2012;74:201-10.</References>