<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd">
<ArticleSet>
  <Article>
    <Journal>
      <PublisherName>isfcppharmaspire</PublisherName>
      <JournalTitle>Pharmaspire</JournalTitle>
      <PISSN>C</PISSN>
      <EISSN>o</EISSN>
      <Volume-Issue>Volume 14,Issue 1 ,2022 </Volume-Issue>
      <PartNumber/>
      <IssueTopic>Multidisciplinary</IssueTopic>
      <IssueLanguage>English</IssueLanguage>
      <Season>January-March 2022 </Season>
      <SpecialIssue>N</SpecialIssue>
      <SupplementaryIssue>N</SupplementaryIssue>
      <IssueOA>Y</IssueOA>
      <PubDate>
        <Year>-0001</Year>
        <Month>11</Month>
        <Day>30</Day>
      </PubDate>
      <ArticleType>Pharmacognosy</ArticleType>
      <ArticleTitle>In silico study for the identification of potential compounds as PIM-1 kinase inhibitors</ArticleTitle>
      <SubTitle/>
      <ArticleLanguage>English</ArticleLanguage>
      <ArticleOA>Y</ArticleOA>
      <FirstPage>1</FirstPage>
      <LastPage>9</LastPage>
      <AuthorList>
        <Author>
          <FirstName>Shahid</FirstName>
          <LastName>Ayaz</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>N</CorrespondingAuthor>
          <ORCID/>
          <FirstName>Vivek</FirstName>
          <LastName>Asati</LastName>
          <AuthorLanguage>English</AuthorLanguage>
          <Affiliation/>
          <CorrespondingAuthor>Y</CorrespondingAuthor>
          <ORCID/>
        </Author>
      </AuthorList>
      <DOI>10.56933/Pharmaspire.2022.14101</DOI>
      <Abstract>PIM kinases are a group of serine/threonine kinases that are classified into three isoforms: PIM1, PIM2, and PIM3. Pim-1 kinase is a critical enzyme that is involved in cell growth, cell survival, differentiation, apoptosis, senescence and drug resistance. The PUBMED database has been taken for the screening of PIM-1 kinase inhibitor. This database, further, screened by Lipinski Rule of five, HTVS, standard precision (SP), and extra precision (XP) methodologies. 2OJF protein of PIM-1 kinase was taken for molecular docking. The compound 1a showed good docking scores, SP = -7.244 and XP = -8.6, whereas 1i showed minimal SP and XP scores. These studies may be used for the further development of potential compounds against PIM-1 kinase.</Abstract>
      <AbstractLanguage>English</AbstractLanguage>
      <Keywords>In silico, Lipinski Rule, PIM-1 kinase, PUBMED database</Keywords>
      <URLs>
        <Abstract>https://isfcppharmaspire.com/ubijournal-v1copy/journals/abstract.php?article_id=14097&amp;title=In silico study for the identification of potential compounds as PIM-1 kinase inhibitors</Abstract>
      </URLs>
      <References>
        <ReferencesarticleTitle>References</ReferencesarticleTitle>
        <ReferencesfirstPage>16</ReferencesfirstPage>
        <ReferenceslastPage>19</ReferenceslastPage>
        <References>1.Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, et al. Murine leukemia virus-induced T-cell lymphomagenesis: Integration of proviruses in a distinct chromosomal region. Cell 1984;37:141-50.&#13;
2. Mikkers H, Allen J, Knipscheer P, Romeyn L, Hart A, Vink E, et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 2002;32:153-9.&#13;
3. Feldman JD, Vician L, Crispino M, Tocco G, Marcheselli VL, Bazan NG, et al. KID-1, a protein kinase induced by depolarization in brain. J Biol Chem 1998;273:16535-43.&#13;
4. Baytel D, Shalom S, Madgar I, Weissenberg R, Don J. The human Pim-2 proto-oncogene and its testicular expression. Biochim Biophys Acta 1998;1442:274-85.&#13;
5. Fox CJ, Hammerman PS, Thompson CB. The Pim kinases control rapamycin-resistant T cell survival and activation. J Exp Med 2005;201:259-66.&#13;
6. Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L, et al. Pim-1: A serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci 2001;2:167-79.&#13;
7. Cuypers HT, Selten G, Berns A, van Kessel AH G. Assignment of the human homologue of Pim-1, a mouse gene implicated in leukemogenesis, to the pter-q12 region of chromosome 6. Hum Genet 1986;72:262-5.&#13;
8. Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett 2004;571:43-9.&#13;
9. Macdonald A, Campbell DG, Toth R, McLauchlan H, Hastie CJ, Arthur JS. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL. BMC Cell Biol 2006;7:1.&#13;
10. Yan B, Zemskova M, Holder S, Chin V, Kraft A, Koskinen PJ, et al. The PIM-2 kinase phosphorylates BAD on serine 112 and reverses BAD-induced cell death. J Biol Chem 2003;278:45358-67.&#13;
11. Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS. Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta 2002;1593:45-55.&#13;
12. Wang Z, Zhang Y, Gu JJ, Davitt C, Reeves R, Magnuson NS. Pim-2 phosphorylation of p21(Cip1/WAF1) enhances itsstability and inhibits cell proliferation in HCT116 cells. Int J Biochem Cell Biol 2010;42:1030-8.&#13;
13. Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y, et al. Phosphorylation/cytoplasmic localization of p21Cip1/ WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 2004;10:3815-24.&#13;
14. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Aktinduced phosphorylation in HER-2/neuoverexpressing cells. Nat Cell Biol 2001;3:245-52.&#13;
15. Cen B, Xiong Y, Song JH, Mahajan S, DuPont R, McEachern K, et al. The pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol 2014;34:2517-32.&#13;
16. Domen J, Von Lindern M, Hermans A, Breuer M, Grosveld G, Berns A. Comparison of the human and mouse PIM-1 cDNAs: Nucleotide sequence and immunological identification of the in vitro synthesized PIM-1 protein. Oncogene Res 1987;1:103-12.&#13;
17. Zakut-Houri R, Hazum S, Givol D, Telerman A. The cDNA sequence and gene analysis of the human pim oncogene. Gene 1987;54:105-11.&#13;
18. Bellon M, Lu L, Nicot C. Constitutive activation of Pim1 kinase is a therapeutic target for adult T-cell leukemia. Blood 2016;127:2439-50.&#13;
19. Lilly M, Le T, Holland P, Hendrickson SL. Sustained expression of the pim-1 kinase is specifically induced in myeloid cells by cytokines whose receptors are structurally related. Oncogene 1992;7:727.&#13;
20. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 2006;354:2431-42.&#13;
21. Santio NM, Landor SK, Vahtera L, Yland;auml;-Pelto J, Paloniemi E, Imanishi SY, et al. Phosphorylation of Notch1 by Pim kinases promotes oncogenic signaling in breast and prostate cancer cells. Oncotarget 2016;7:43220.&#13;
22. Warnecke-Eberz U, Bollschweiler E, Drebber U, Metzger R, Baldus SE, Hoelscher AH, et al. Prognostic impact of protein overexpression of the proto-oncogene PIM-1 in gastric cancer. Anticancer Res 2009;29:4451-5.&#13;
23. Peltola K, Hollmen M, Maula SM, Rainio E, Ristamand;auml;ki R, Luukkaa M, et al. Pim-1 kinase expression predicts radiation response in squamocellular carcinoma of head and neck and is under the control of epidermal growth factor receptor. Neoplasia 2009;11:629-36.&#13;
24. Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J 1991;10:655-64.&#13;
25. Xie Y, Xu K, Dai B, Guo Z, Jiang T, Chen H, et al. The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs. Oncogene 2006;25:70-8.&#13;
26. Blanco-Aparicio C, Carnero A. Pim kinases in cancer: Diagnostic, prognostic and treatment opportunities. Biochem Pharmacol 2013;85:629-43.&#13;
27. Matikainen S, Sareneva T, Ronni T, Lehtonen A, Koskinen PJ, Julkunen I. Interferon-alpha activates multiple STAT proteins and upregulates proliferationassociated IL-2Ralpha, c-myc, and pim-1 genes in human T cells. Blood 1999;93:1980-91.&#13;
28. Casillas AL, Toth RK, Sainz AG, Singh N, Desai AA, Kraft AS, et al. Hypoxia-inducible PIM kinase expression Ayaz and Asati: In silico study for the identification of potential compounds as PIM-1 kinase inhibitors&#13;
9 Pharmaspire | Vol. 14 | No. 1 | 2022 promotes resistance to antiangiogenic agentsPIM promotes angiogenesis and resistance to VEGF inhibitors. Clin Cancer Res 2018;24:169-80.&#13;
29. Zhao Y, Hamza MS, Leong HS, Lim CB, Pan YF, Cheung E, et al. Kruppel-like factor 5 modulates p53- independent apoptosis through Pim1 survival kinase in cancer cells. Oncogene 2008;27:1-8.&#13;
30. Malinen M, Jand;auml;and;auml;skeland;auml;inen T, Pelkonen M, Heikkinen S, Vand;auml;isand;auml;nen S, Kosma VM, et al. Proto-oncogene PIM-1 is a novel estrogen receptor target associating with high grade breast tumors. Mol Cell Endocrinol 2013;365:270-6.&#13;
31. Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C, et al. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 2005;280:6130-7.&#13;
32. Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 1999;11:709-19.&#13;
33. Raab MS, Thomas SK, Ocio EM, Guenther A, Goh YT, Talpaz M, et al. The firstin- human study of the panPIM kinase inhibitor PIM447 in patients with relapsed and/or refractory multiple myeloma. Leukemia 2019;33:2924-33.&#13;
34. Luszczak S, Kumar C, Sathyadevan VK, Simpson BS, Gately KA, Whitaker HC, et al. PIM kinase inhibition: Co-targeted therapeutic approaches in prostate cancer. Signal Transduct Target Ther 2020;5:7.&#13;
35. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein ligand complexes. J Med Chem 2006;49:6177-96.&#13;
36. Elokely KM. Ligprep, Version 2.5. New York: Schrand;ouml;dinger, LLC; 2012.&#13;
37. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA. PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 2006;20:647-71.&#13;
38. Leonard JT, Roy K. On selection of training and test sets for the development of predictive QSAR models. QSAR Comb Sci 2006;25:235-51.&#13;
39. Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996;118:11225-36.&#13;
40. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004;47:1739-49.&#13;
41. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, et al. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 2004;47:1750-9.&#13;
42. Roy K, Paul S. Exploring 2D and 3D QSARs of 2, 4-diphenyl-1, 3-oxazolines for ovicidal activity against Tetranychus urticae. QSAR Comb Sci 2009;28:406-25. 43. Godschalk F, Genheden S, Sand;ouml;derhjelm P, Ryde U. Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Phys Chem Chem Phys 2013;15:7731-9.</References>
      </References>
    </Journal>
  </Article>
</ArticleSet>