PHARMASPIRE - Volume 15, Issue 04, 2023, October-December
Pages: 272-277
Date of Publication: 17-Feb-2024
Print Article
Download XML Download PDF
Recent advancement and development of capillary isotachophoresis: A review
Author: Sumit Pasricha, Balak Das Kurmi, Vivek Asati, Preeti Patel
Category: P'Ceutical Analysis
Abstract:
Capillary Isotachophoresis (CITP) is an advanced technique that is used for the separation of substances with electrophoretic mobility and their charges. The isotachophoresis electrolyte system is presented, along with how the effective mobilities and molar amounts of the analytes influence the separation and time required to attain the steady state for a certain electrolyte condition. One approach called CITP uses a “moving border.” Between the leading and terminating electrolytes is a sample zone where all solutes travel at the same speed in distinct bands. In this article, we have described the different and latest developments of CITP, i.e., isotachophoresis in nanoparticle studies, in the hyphenation technique, in the bioanalytical sector, and in various food tracing elements. Although traditional Isotachophoresis is becoming less popular, isotachophoresis is becoming more used for a variety of samples as a preconcentration approach for CZE analysis.
Keywords: Advance techniques, Analytes, Capillary isotachophoresis
DOI: 10.56933/Pharmaspire.2023.15140
DOI URL: https://doi.org/10.56933/Pharmaspire.2023.15140
References:
1. Dziomba S, Ciura K, Correia B, Wielgomas B. Stabilization and isotachophoresis of unmodified gold nanoparticles in capillary electrophoresis. Anal Chim Acta 2019;1047:248-56.
2. Malá Z, Gebauer P. Capillary isotachophoresis with electrospray-ionization mass-spectrometric detection: Cationic electrolyte systems in the medium-alkaline range for selective analysis of medium strong bases. J Chromatogr A 2020;1618:460907.
3. Feng J, Li J, Huang W, Cheng H, Zhang Z, Li L. Capillary zone electrophoresis determination of five trace food additives in beverage samples using counterflow transient isotachophoresis. Food Anal Methods 2021;14:380-8.
4. Clerici M, Carvalho-Silva L. Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Res Int 2011;44:1658-70.
5. Gebauer P, Malá Z, Bo?ek P. Recent progress in analytical capillary isotachophoresis. Electrophoresis 2011;32:83-9.
6. Rabel SR, Stobaugh JF. Applications of capillary electrophoresis in pharmaceutical analysis. Pharm Res 1993;10:171-86.
7. Hirokawa T. Capillary isotachophoresis. Cap. Electromi Sep Meth 2018;11:189-208.
8. Winzor DJ. From gel filtration to biosensor technology: The development of chromatography for the characterization of protein interactions. J Mol Recognit 2000;13:279-98.
9. Eid C, Santiago JG. Isotachophoresis applied to biomolecular reactions. Lab Chip 2017;18:11-26.
10. Shebindu A, Somaweera H, Estlack Z, Kim J, Kim J. A fully integrated isotachophoresis with a programmable microfluidic platform. Talanta 2021;225:122039.
11. Bo?ek P. Analytical isotachophoresis. Anal Prob 1981;11:131-77.
12. Xu L, Meng W, Lu J, Cui F, Gao L, Chen L, et al. Hyphenation of field-amplified sample injection and transient isotachophoresis in CE for the determination of sotalol and metoprolol in human urine samples. J Sep Sci 2020;43:2193-200.
13. Roy D, Colyer CL. Nitrogen-doped carbon dots aid in the separation of ssDNA molecules of different length by capillary transient isotachophoresis (ctITP) with laserinduced fluorescence (LIF) detection. J Chromatogr A 2021;1641:461990.
14. Terzis A, Ramachandran A, Kang J, Santiago JG. Simultaneous optical and infrared thermal imaging of isotachophoresis. Anal Chim Acta 2020;1131:9-17.
15. Masár M, Hradski J. Microchip isotachophoresis: Analysis of pharmaceuticals. Methods Mol Biol 2019;1906:99-111.
16. Piestansky J, Matuskova M, Cizmarova I, Majerova P, Kovac A, Mikus P. Ultrasensitive determination of serotonin in human urine by a two dimensional capillary isotachophoresis-capillary zone electrophoresis hyphenated with tandem mass spectrometry. J Chromatogr A 2021;1648:462190.
17. Beutner A, Herl T, Matysik FM. Selectivity enhancement in capillary electrophoresis by means of two-dimensional separation or dual detection concepts. Anal Chim Acta 2019;1057:18-35.
18. Grochocki W, Markuszewski MJ, Quirino JP. Multidimensional capillary electrophoresis. Electrophoresis 2015;36:135-43.
19. Asensio-Ramos M, Hernández-Borges J, Rocco A, Fanali S. Food analysis: A continuous challenge for miniaturized separation techniques. J Sep Sci 2009;32:3764-800.
20. Subirats X, Blaas D, Kenndler E. Recent developments in capillary and chip electrophoresis of bioparticles: Viruses, organelles, and cells. Electrophoresis 2011;32:1579-90.
21. Rogacs A, Marshall LA, Santiago JG. Purification of nucleic acids using isotachophoresis. J Chromatogr A 2014;1335:105-20.
22. Schwartz HE, Ulfelder KJ. Analysis of bases, nucleosides, and (oligo)nucleotides by capillary electrophoresis. Methods Mol Biol 1996;52:227-64.
23. Ilgu M, Nilsen-Hamilton M. Aptamers in analytics. Analyst 2016;141:1551-68.
24. Lu C, Yang H, Zhu C, Chen X, Chen G. Synthesis of graphene with both high nitrogen content and high surface area by annealing composite of graphene oxide and g-C3N4. Angew Chem Int Ed 2009;48:4785-7.
25. Abedi AS, Mohammadi A, Azadniya E, Mortazavian AM, Khaksar R. Simultaneous determination of sorbic and benzoic acids in milk products using an optimised microextraction technique followed by gas chromatography. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014;31:21-8.
26. Isakau HA, Trukhacheva TV, Zhebentyaev AI, Petrov PT. HPLC study of chlorin e6 and its molecular complex with polyvinylpyrrolidone. Biomed Chromatogr 2007;21:318-25.
27. Hattori T, Okamura H, Asaoka S, Fukushi K. Capillary zone electrophoresis determination of aniline and pyridine in sewage samples using transient isotachophoresis with a system-induced terminator. J Chromatogr A 2017;1511:132-7.
28. Murugesan K, Hogan CA, Palmer Z, Reeve B, Theron G, Andama A, et al. Investigation of preanalytical variables impacting pathogen cell-free DNA in blood and urine. J Clin Microbiol 2019;57:e00782-19.
29. Hitchcock MM, Holubar M, Hogan CA, Tompkins LS, Banaei N. Dual reporting of clostridioides difficile PCR and predicted toxin result based on pcr cycle threshold reduces treatment of toxin-negative patients without increases in adverse outcomes. J Clin Microbiol 2019;57:e01288-19.
30. Ouyang L, Liu Q, Liang H. Combining field-amplified sample stacking with moving reaction boundary electrophoresis on a paper chip for the preconcentration and separation of metal ions. J Sep Sci 2017;40:789-97.
31. Chu C, Wei M, Liu C, Li H, Cao J, Yan J. Over 1000- fold improvement in an online preconcentration of trace anionic compounds by capillary electrophoresis with ionic liquid micelle-based three-step stacking. Anal Chim Acta 2018;1044:191-7.
|