Join us   Log in   pharmaspire@isfcp.org  


PHARMASPIRE - Volume 15, Issue 03, 2023 , July- September

Pages: 197-210

Date of Publication: 11-Dec-2023


Print Article   Download XML  Download PDF

Recent updates on analysis of alteration of Zn level in cancer patients

Author: Alamjot Singh, Komal Dagar, Vivek Asati

Category: P'Ceutical Analysis

Abstract:

Zn micronutrient is involved in many physiological processes that include enzyme activity, genomic stability, DNA repairing, apoptosis, immunity, neurological function, response to oxidative stress, and cell signaling. The deficiency of trace element Zn may be responsible for the mutation of DNA, tumor genesis, and carcinoma cell production. The Zn level has been found to decrease in cancer patients as compared to the healthy controls. Various cancer such as breast, ovarian, prostate, lung, Ewing, endometrial, brain, and bladder cancer have been correlated with Zinc deficiency. The polymorphism may be correlated with the ZINC deficiency in several cancer patients. The polymorphism has been observed in MT2A, Matrix metalloproteinase (MMP)-1, MMP-2, MMP-7, and MMP-13 genes significantly change in the Zn levels in the serum of prostate cancer patients. The genotypes GSTM1 and GSTT1 significantly change the concentration of zinc concentration in lung cancer patients. The presence of polymorphism rs1805502 in the GRIN2B gene within the brain is associated with a notably reduced concentration of zinc in the serum. The results of these studies associated with deficiency of zinc in the body may cause DNA damage, mutation in DNA, and tumor growth. This review article provides a detailed description of the deficiency of the Zn element in cancer patients and polymorphisms in genes encoding zinc-dependent proteins associated with different cancers.

Keywords: Cancer, DNA, Mutation, Polymorphism, Zinc

DOI: 10.56933/Pharmaspire.2023.15131

DOI URL: https://doi.org/10.56933/Pharmaspire.2023.15131

References:

1. Cancer - Symptoms and Causes. Mayo Clinic; 2022. Available from: https://www.mayoclinic.org/diseasesconditions/cancer/symptoms-causes/syc-20370588 [Last accessed on 2022 Sep 01].

2. Breast Cancer - Introduction; 2022. Available from: https://www.cancer.net/cancer-types/breast-cancer/ introduction [Last accessed on 2022 Sep 01].

3. Prostate Cancer - Introduction; 2022. Available from: https://www.cancer.net/cancer-types/prostate-cancer/ introduction [Last accessed on 2022 Sep 01].

4. Types of Cancer. Cancer.Net; 2022. Available from: https://www.cancer.net/cancer-types [Last accessed on 2022 Sep 01]. 5. Bladder Cancer - Symptoms and Causes. Mayo Clinic; 2022. Available from: https://www.mayoclinic.org/ diseases-conditions/bladder-cancer/symptoms-causes/ syc-20356104 [Last accessed on 2022 Sep 01].

6. Endometrial Cancer - Symptoms and Causes. Mayo Clinic; 2022. Available from: https://www.mayoclinic. org/diseases-conditions/endometrial-cancer/symptomscauses/syc-20352461 [Last accessed on 2022 Sep 01].

7. Ewing Sarcoma - Symptoms and Causes. Mayo Clinic; 2022. Available from: https://www.mayoclinic.org/ diseases-conditions/Ewing-sarcoma/symptoms-causes/ syc-20351071 [Last accessed on 2022 Sep 01].

8. Lung Cancer - Symptoms and Causes. Mayo Clinic; 2022. Available from: https://www.mayoclinic.org/ diseases-conditions/lung-cancer/symptoms-causes/syc20374620 [Last accessed on 2022 Sep 01].

9. Symptoms and Causes - Mayo Clinic; 2022. Available from: https://www.mayoclinic.org/diseases-conditions/ ovarian-cancer/symptoms-causes/syc-20375941?p=1 [Last accessed on 2022 Sep 01].

10. Jin Y, Zhang C, Xu H, Xue S, Wang Y, Hou Y, et al. Combined effects of serum trace metals and polymorphisms of CYP1A1 or GSTM1 on non-small cell lung cancer: A hospital based case-control study in China. Cancer Epidemiol 2011;35:182-7.

11. Ho E. Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 2004;15:572-8.

12. Bray TM, Bettger WJ. The physiological role of zinc as an antioxidant. Free Radic Biol Med 1990;8:281-91.

13. Singh CK, Pitschmann A, Ahmad N. Resveratrol-zinc combination for prostate cancer management. Cell Cycle 2014;13:1867-74.

14. Dhawan DK, Chadha VD. Zinc: A promising agent in dietary chemoprevention of cancer. Indian J Med Res 2010;132:676-82.

15. Chasapis CT, Ntoupa PA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol 2020;94:1443-60.

16. Tapiero H, Tew KD. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed Pharmacother 2003;57:399-411.

17. Luo H, Fang YJ, Zhang X, Feng XL, Zhang NQ, Abulimiti A, et al. Association between dietary zinc and selenium intake, oxidative stress-related gene polymorphism, and colorectal cancer risk in Chinese population - a case-control study. Nutr Cancer 2021;73:1621-30.

18. Polymorphism; 2022. Available from: https://www. genome.gov/genetics-glossary/polymorphism [Last accessed on 2022 Sep 12].

19. Reszka E, Wasowicz W, Gromadzinska J, Winnicka R, Szymczak W. Evaluation of selenium, zinc and copper levels related to GST genetic polymorphism in lung cancer patients. Trace Elem Electroly 2005;22:23-32.

20. Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr 2004;24:151-72.

21. Sekler I, Sensi SL, Hershfinkel M, Silverman WF. Mechanism and regulation of cellular zinc transport. Mol Med 2007;13:337-43.

22. Bia?kowska K, Marciniak W, Muszy?ska M, Baszuk P, Gupta S, Jaworska-Bieniek K, et al. Association of zinc level and polymorphism in MMP-7 gene with prostate cancer in Polish population. PLoS One 2018;13:0201065.

23. Liu Q, Zhu B, Xue Q, Xie X, Zhou Y, Zhu K, et al. The associations of zinc and GRIN2B genetic polymorphisms with the risk of dyslexia. Environ Res 2020;191:110207.

24. Zhu H, Yang L, Zhou B, Yu R, Tang N, Wang B. Myeloperoxidase G-463A polymorphism and the risk of gastric cancer: A case-control study. Carcinogenesis 2006;27:2491-6.

25. Krze?lak A, Forma E, Chwatko G, Jó?wiak P, Szymczyk A, Wilkosz J, et al. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer. Toxicol Appl Pharmacol 2013;268:278-85.

26. Miller JJ, Orvain C, Jozi S, Clarke RM, Smith JR, Blanchet A, et al. Multifunctional compounds for activation of the p53-Y220C mutant in cancer. Chemistry 2018;24:17734-42.

27. Rentschler G, Kippler M, Axmon A, Raqib R, Skerfving S, Vahter M, et al. Cadmium concentrations in human blood and urine are associated with polymorphisms in zinc transporter genes. Metallomics 2014;6:885-91.

28. Yanar K, Cakatay UF, Ayd?n S, Verim A, Atukeren P, Özkan NE, et al. Relation between endothelial nitric oxide synthase genotypes and oxidative stress markers in larynx cancer. Oxid Med Cell Longev 2016;2016:4985063.

29. Hogstrand C, Kille P, Nicholson RI, Taylor KM. Zinc transporters and cancer: A potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 2009;15:101-11.

30. Kambe T, Hashimoto A, Fujimoto S. Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 2014;71:3281-95.

31. Palmiter RD, Findley SD. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 1995;14:639-49.

32. Hasumi M, Suzuki K, Matsui H, Koike H, Ito K, Yamanaka H. Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett 2003;200:187-95.

33. Chandler P, Kochupurakkal BS, Alam S, Richardson AL, Soybel DI, Kelleher SL. Subtype-specific accumulation of intracellular zinc pools is associated with the malignant phenotype in breast cancer. Mol Cancer 2016;15:2.

34. McCormick NH, Kelleher SL. ZnT4 provides zinc to zincdependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol 2012;303:C291-7.

35. Henshall SM, Afar DE, Rasiah KK, Horvath LG, Gish K, Caras I, et al. Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene 2003;22:6005-12.

36. Johnson LA, Kanak MA, Kajdacsy-Balla A, Pestaner JP, Bagasra O. Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods 2010;52:316-21.

37. Franklin RB, Feng P, Milon B, Desouki MM, Singh KK, Kajdacsy-Balla A, et al. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer 2005;4:32.

38. Desouki MM, Geradts J, Milon B, Franklin RB, Costello LC. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol Cancer 2007;6:37.

39. Chen QG, Zhang Z, Yang Q, Shan GY, Yu XY, Kong CZ. The role of zinc transporter ZIP4 in prostate carcinoma. Urol Oncol 2012;30:906-11.

40. Costello LC, Levy BA, Desouki MM, Zou J, Bagasra O, Johnson LA, et al. Decreased zinc and downregulation of ZIP3 zinc uptake transporter in the development of pancreatic adenocarcinoma. Cancer Biol Ther 2011;12:297-303.

41. Li M, Zhang Y, Liu Z, Bharadwaj U, Wang H, Wang X, et al. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci U S A 2007;104:18636-41.

42. Franklin RB, Zou J, Costello LC. The cytotoxic role of RREB1, ZIP3 zinc transporter, and zinc in human pancreatic adenocarcinoma. Cancer Biol Ther 2014;15:1431-7.

43. Costello LC, Franklin RB. A review of the current status and concept of the emerging implications of zinc and zinc transporters in the development of pancreatic cancer. Pancreat Disord Ther 2013;Suppl 4:002.

44. Li M, Zhang Y, Bharadwaj U, Zhai QJ, Ahern CH, Fisher WE, et al. Down-regulation of ZIP4 by RNA interference inhibits pancreatic cancer growth and increases the survival of nude mice with pancreatic cancer xenografts. Clin Cancer Res 2009;15:5993-6001.

45. Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI. ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer Cells. Endocrinology 2008;149:4912-20.

46. Ding X, Jiang M, Jing H, Sheng W, Wang X, Han J, et al. Analysis of serum levels of 15 trace elements in breast cancer patients in Shandong, China. Environ Sci Pollut Res Int 2015;22:7930-5.

47. Golabek T, Darewicz B, Borawska M, Socha K, Markiewicz R, Kudelski J. Copper, zinc, and Cu/Zn ratio in transitional cell carcinoma of the bladder. Urol Int 2012;89:342-7.

48. Atakul T, Altinkaya SO, Abas BI, Yenisey C. Serum copper and zinc levels in patients with endometrial cancer. Biol Trace Elem Res 2020;195:46-54.

49. Cobanoglu U, Demir H, Sayir F, Duran M, Mergan D. Some mineral, trace element and heavy metal concentrations in lung cancer. Asian Pac J Cancer Prev 2010;11:1383-8.

50. Jin Y, Zhang C, Xu H, Xue S, Wang Y, Hou Y, et al. Combined effects of serum trace metals and polymorphisms of CYP1A1 or GSTM1 on non-small cell lung cancer: A hospital based case-control study in China. Cancer Epidemiol 2011;35:182-7.

51. He ZJ. Detection of serum trace elements in lung cancer patients and its significance. Chin Med J 2011;8:118-9.

52. Cheng Z, Dai LL, Kang Y. Detection of trace elements of patients with lung cancers and pulmonary infections and its clinical significance. Chin J Nosocomiol 2011;21:2006-8.

53. Ozmen H, Erulas FA, Karatas F, Cukurovali A, Yalcin O. Comparison of the concentration of trace metals (Ni, Zn, Co, Cu and Se), Fe, Vitamins A, C and E, and lipid peroxidation in patients with prostate cancer. Clin Chem Lab Med 2006;44:175-9.

54. Ha?imo?lu Z, Erbayraktar Z, Özer E, Erbayraktar S, Erkmen T. Quantitative analysis of serum zinc levels in primary brain tumor patients. Biol Trace Elem Res 2022;200:568-73.

55. Mazdak H, Yazdekhasti F, Movahedian A, Mirkheshti N, Shafieian M. The comparative study of serum iron, copper, and zinc levels between bladder cancer patients and a control group. Int Urol Nephrol 2010;42:89-93.

56. Karki K, Pande D, Negi R, Khanna S, Khanna RS, Khanna HD. Correlation of serum toll like receptor 9 and trace elements with lipid peroxidation in the patients of breast diseases. J Trace Elem Med Biol 2015;30:11-6.

57. Pavithra V, Sathisha TG, Kasturi K, Mallika DS, Amos SJ, Ragunatha S. Serum levels of metal ions in female patients with breast cancer. J Clin Diagn Res 2015;9:c25-7.

58. Saleh SA, Adly HM, Abdelkhaliq AA, Nassir AM. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Curr Urol 2020;14:44-9.

59. Chanihoon GQ, Afridi HI, Kazi TG, Talpur FN, Baig JA. Evaluation of zinc and cadmium levels in the biological samples of Ewing sarcomas patients and healthy subjects. Clin Chim Acta 2021;522:1-7.

60. Li H, Liu JG, Li ZY, Li XG. The clinical significance of breast Cancer patients’ microelement content in serum from chemotherapy beginning to end. J Weav Spinn Dye 2008;12:276-80.

61. Naidu BG, Sarita P, Raju GN, Tiwari MK. Multivariate analysis of trace elemental data obtained from blood serum of breast cancer patients using SRXRF. Results Phys 2019;12:673-80.

62. Choi R, Kim MJ, Sohn I, Kim S, Kim I, Ryu JM, et al. Serum trace elements and their associations with breast cancer subgroups in Korean breast cancer patients. Nutrients 2018;11:37.

63. Costello LC, Franklin RB. Zinc is decreased in prostate cancer: An established relationship of prostate cancer! J Biol Inorg Chem 2011;16:3-8.

64. Shetty SR, Babu S, Kumari S, Shetty P, Hegde S, Karikal A. Status of trace elements in saliva of oral precancer and oral cancer patients. J Cancer Res Ther 2015;11:146-9.

65. Shetty SR, Babu S, Kumari S, Andina I. An overview of the female reproductive system: A narrative literature review. Sriwijaya J Obstet Gynecol 2023;1:16-23