PHARMASPIRE - Volume 15, Issue 03, 2023 , July- September
Pages: 98-102
Date of Publication: 09-Dec-2023
Print Article
Download XML Download PDF
A perspective on the effectiveness of SARS-Cov-2 rapid testing kits
Author: Jashanpreet Kaur, Naresh Kumar Rangra
Category: P'Ceutical Analysis
Abstract:
Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) are generally diagnosed by rapid antigen test (RAT) and reverse transcription-polymerase chain reaction (RT-PCR) tests. However, there is a conflict that the RT-PCR test is more effective than the RAT. The primary objective of this perspective is to compare and outline the effectiveness of SARS-CoV-2 rapid testing kits available in the market with RT-PCR tests. Recently published systematic reviews and meta-analysis reports containing comparative studies of RAT and RT-PCR were selected. The analysis results revealed that RAT kits provide remarkable specificity and sensitivity in the early stages of infection, particularly when the viral load is huge, compared to RT-PCR. In addition, a trustworthy substitute for nasopharyngeal sampling is the use of nasal specimens for antigen detection, which are patient-friendly and somewhat sensitive. RAT could be beneficial in the combat against the COVID-19 pandemic, but it has to be combined with appropriate monitoring of results that come back negative.
Keywords: COVID-19, Rapid antigen tests, Reverse transcription-polymerase chain reaction
DOI: 10.56933/Pharmaspire.2023.15118
DOI URL: https://doi.org/10.56933/Pharmaspire.2023.15118
References:
1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270-3.
2. Kim JM, Chung YS, Jo HJ, Lee NJ, Kim MS, Woo SH, et al. Identification of coronavirus isolated from a patient in Korea with COVID-19. Osong Public Health Res Perspect 2020;11:3.
3. Corman VM, Muth D, Niemeyer D, Drosten C. Chapter eight-hosts and sources of endemic human coronaviruses. Adv Virus Res 2019;100:163-88. 4. Menachery VD, Graham RL, Baric RS. Jumping species-a mechanism for coronavirus persistence and survival. Curr Opin Virol 2017;23:1-7.
5. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020;395:565-74.
6. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses-a statement of the Coronavirus Study Group. BioRxiv 2020.
7. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras AS. Fullgenome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol 2020;79:104212.
8. Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID?19) implicate special control measures. J Med Virol 2020;92:568-76.
9. La Marca A, Capuzzo M, Paglia T, Roli L, Trenti T, Nelson SM. Testing for SARS-CoV-2 (COVID-19): A systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online 2020;41:483-99.
10. Kailasa SK, Mehta VN, Koduru JR, Basu H, Singhal RK, Murthy ZV, et al. An overview of molecular biology and nanotechnology based analytical methods for the detection of SARS-CoV-2: Promising biotools for the rapid diagnosis of COVID-19. Analyst 2021;146:1489-513.
11. Gardner RS, Capodilupo RC, Ahmed R, Stolen CM, An Q, Averina V, et al. Multiparameter diagnostic sensor measurements in heart failure patients presenting with SARS-CoV-2 infection. ESC Heart Fail 2021;8:4026-36.
12. Acosta-Pérez T, Rodríguez-Yánez T, Almanza-Hurtado A, Martínez-Ávila MC, Dueñas-Castell C. Dynamics of dengue and SARS-COV-2 co-infection in an endemic area of Colombia. Trop Dis Travel Med Vaccines 2022;8:12.
13. Chavda V, Chaurasia B, Fiorindi A, Umana GE, Lu B, Montemurro N. Ischemic stroke and SARSCoV-2 infection: The bidirectional pathology and risk morbidities. Neurol Int 2022;14:391-405.
14. da Silva Fidalgo TK, Freitas-Fernandes LB, Marques BB, de Araújo CS, da Silva BJ, Guimarães TC, et al. Salivary metabolomic analysis reveals amino acid metabolism shift in SARS-CoV-2 virus activity and post-infection condition. Metabolites 2023;13:263.
15. Lee S, Widyasari K, Yang HR, Jang J, Kang T, Kim S. Evaluation of the diagnostic accuracy of nasal cavity and nasopharyngeal swab specimens for SARS-CoV-2 detection via rapid antigen test according to specimen collection timing and viral load. Diagnostics 2022;12:710.
16. Jakobsen KK, Jensen JS, Todsen T, Kirkby N, Lippert F, Vangsted AM, et al. Accuracy of anterior nasal swab rapid antigen tests compared with RT?PCR for massive SARS?CoV?2 screening in low prevalence population. Apmis 2022;130:95-100.
17. Sukanya SA, Kamalanand K. Deep learning-assisted efficient Staging of SARS-CoV-2 lesions using lung CT slices. Math Probl Eng 2022;2022:1-2.
18. Lee S, Widyasari K, Yang HR, Jang J, Kang T, Kim S. Evaluation of the diagnostic accuracy of nasal cavity and nasopharyngeal swab specimens for SARS-CoV-2 detection via rapid antigen test according to specimen collection timing and viral load. Diagnostics 2022;12:710.
19. Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A, Davenport C, Dittrich S, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Sys Rev 2021;2021:CD013705.
20. Parvu V, Gary DS, Mann J, Lin YC, Mills D, Cooper L, et al. Factors that influence the reported sensitivity of rapid antigen testing for SARS-CoV-2. Front Microbiol 2021;12:714242.
21. Hurtado AV, Nguyen HT, Schenkel V, Wachinger J, Seybold J, Denkinger CM, et al. The economic cost of implementing antigen-based rapid diagnostic tests for COVID-19 screening in high-risk transmission settings: Evidence from Germany. Health Econ Rev 2022;12:15.
22. Shehu IA, Musa MK, Datta A, Verma A. Application of nanotechnology in COVID-19 infection: Findings and limitations. J Nanotheranostics 2022;3:203-32.
23. Liu R, Han H, Liu F, Lv Z, Wu K, Liu Y, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta 2020;505:172-5.
24. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: Relationship to negative RT-PCR testing. Radiology 2020;296:E41-5.
25. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020;382:1199-207.
26. Mortazavi SE, Inghammar M, Christiansen C, Pesola AK, Stenkilsson M, Paulsson M. A retrospective cohort study of the effect of SARS-CoV-2 point of care rapid RT-PCR at the Emergency Department on targeted admission. BMC Infect Dis 2022;22:536.
27. Turcato G, Zaboli A, Pfeifer N, Sibilio S, Tezza G, Bonora A, et al. Rapid antigen test to identify COVID-19 infected patients with and without symptoms admitted to the Emergency Department. Am J Emerg Med 2022;51:92-7.
28. Bräunlich J, Hoheisel R, Dinse-Lambracht A. Comparison of SARS-CoV-2 antigen testing to RT-PCR in a real-world setting-an observational cohort study. Diagn Microbiol Infect Dis 2022;102:115531.
29. Mohammadie ZE, Akhlaghi S, Samaeinasab S, Shaterzadeh-Bojd S, Jamialahmadi T, Sahebkar A. Clinical performance of rapid antigen tests in comparison to RT-PCR for SARS-COV-2 diagnosis in Omicron variant: A systematic review and meta-analysis. Rev Med Virol 2023;33:e2428
|