Join us   Log in   pharmaspire@isfcp.org  


PHARMASPIRE - Volume 10, Issue 3, July - September, 2018

Pages: 98-106

Date of Publication: 14-Jun-2022


Print Article   Download XML  Download PDF

Recent advances in drug delivery systems in antiviral therapy

Author: Ekta Mishra, Amit K Goyal, Goutam Rath

Category: Pharmaceutics

Abstract:

Intracellular parasitic nature, quick adaptation to antiviral drugs, and rapid mutation pose a great challenge to create an effective therapeutic strategy to combat viral infection. Most of the antiviral drugs have low aqueous solubility, low permeability, and other associated physical properties which make them difficult for the antiviral therapy. Novel drug delivery systems due to their unique surface properties and physiochemical properties enable higher drug solubility, better targeting ability, and enhanced drug stability attracted a great deal of interest in the treatment of viral infections. Novel drug carriers such as liposomes, dendrimer, solid dispersion, microparticles, and nanoparticles are employed to improve therapeutic outcomes. The recent advancements made in the field of antiviral therapy have been discussed in this article.

Keywords: Viral infections, antiviral drugs, mechanism, novel drug delivery

References:

1. Akbarzadeh A, Kafshdooz L, Razban Z, Dastranj Tbrizi A, Rasoulpour S, Khalilov R, et al. An overview application of silver nanoparticles in inhibition of herpes simplex virus. Artif Cells Nanomed Biotechnol 2018;46:263-7.

2. Shiraki K, Daikoku T, Takemoto M, Himaki T, Kuramoto T. Mechanism of action of antiviral drugs. Nihon Rinsho 2012;70:545-51.

3. Zhang H, Zhang S, Liu N. Prevention and control of emergent infectious disease with high specific antigen sensor. Artif Cells Nanomed Biotechnol 2017; 45:1298-303.

4. Little SJ, Holte S, Routy JP, Daar ES, Markowitz M, Collier AC, et al. Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med 2002;347:385-94.

5. Littler E, Oberg B. Achievements and challenges in antiviral drug discovery. Antivir Chem Chemother 2005;16:155-68.

6. Calenbergh SV, Herdewijn P. A heterogeneous collection of novel antiviral pyrimidines. Exp Opin Ther Pat 2000;10:289-95.

7. Durai RD. Review article drug delivery approaches of an antiviral drug: A comprehensive review. Asian J Pharm 2015;9:1-2.

8. Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: Relevance to drug delivery. Cell Mol Life Sci 2009;66:2873-96.

9. Szunerits S, Barras A, Khanal M, Pagneux Q, Boukherroub R. Nanostructures for the inhibition of viral infections. Molecules 2015;20:14051-81.

10. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, et al. Porous metalorganic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 2010;9:172-8.

11. Mehendale R, Joshi M, Patravale VB. Nanomedicines for treatment of viral diseases. Crit Rev Ther Drug Carrier Syst 2013;30:1-49.

12. Lembo D, Cavalli R. Nanoparticulate delivery systems for antiviral drugs. Antivir Chem Chemother 2010;21:53-70.

13. Destache CJ, Date A, Inventors; Creighton University, Assignee. Encapsulation of Hydrophillic Antiretroviral Drugs in Nanocarriers. United States Patent Application US 14/792,288; 2015.

14. Tuk B, Jousma H, Gaillard PJ. Treatment with penicillin G and hydrocortisone reduces ALS-associated symptoms: Acase series of three patients. F1000Res 2017; 6:410.

15. Bergeron MG, Desormeaux A, Inventors; Infectio Recherche Inc, Assignee. Liposomes Encapsulating Antiviral Drugs. United States Patent US 5,773,027; 1998.

16. Karolewicz B, Nartowski K, Pluta J, Górniak A. Physicochemical characterization and dissolution studies of acyclovir solid dispersions with pluronic F127 prepared by the kneading method. Acta Pharm 2016;66:119-28.

17. Ahuja N, Katare OP, Singh B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm 2007;65:26-38.

18. Balasaheb PA, Balaji TE, Avinash BI. Solid dispersions: An overview on solubility enhancement of poorly water soluble drugs. Int J Pharma Bio Sci 2014;5:7-25.

19. Mogal SA, Gurjar PN, Yamgar DS, Kamod AC. Solid dispersion technique for improving solubility of some poorly soluble drugs. Der Pharm Lett 2012; 4:1574-86.

20. Nikghalb LA, Singh G, Singh G, Kahkeshan KF. Solid dispersion: Methods and polymers to increase the solubility of poorly soluble drugs. JAppl Pharm Sci 2012; 2:170-5.

21. Christian P, Von der Kammer F, Baalousha M, Hofmann T. Nanoparticles: Structure, properties, preparation and behaviour in environmental media. Ecotoxicology 2008;17:326-43.

22. Yildiz I, Shukla S, Steinmetz NF. Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 2011;22:901-8.

23. Bender A, Schfer V, Steffan AM, Royer C, Kreuter J, Rübsamen-Waigmann H, et al. Inhibition of HIV in vitro by antiviral drug-targeting using nanoparticles. Res Virol 1994;145:215-20.

24. Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology 2010;8:1.

25. Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M, et al. Silver nanoparticles as potential antiviral agents. Molecules 2011;16:8894-918.

26. Singh L, Kruger HG, Maguire GE, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 2017; 4:105-31.

27. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, AkbarzadehA, et al. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res Lett 2014;9:393.

28. Mehra NK, Jain NK. Development, characterization and cancer targeting potential of surface engineered carbon nanotubes. J Drug Target 2013; 21:745-58.

29. He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C, et al. Carbon nanotubes: Applications in pharmacy and medicine. Biomed Res Int 2013; 2013:578290.

30. Lamberti M, Pedata P, Sannolo N, Porto S, De Rosa A, Caraglia M, et al. Carbon nanotubes: Properties, biomedical applications, advantages and risks in patients and occupationally-exposed workers. Int J Immunopathol Pharm 2015; 28:4-13.

31. Hirlekar R, Yamagar M, Garse H, Vij M, Kadam V. Carbon nanotubes and its applications: A review. Asian J Pharm Clin Res 2009;2:17-27.

32. Yadav HK, Al Halabi NA, Alsalloum GA. Nanogels as novel drug delivery systems - A review. J Pharm Pharm Res 2017;1:5.

33. Sultana F, Imran-Ul-Haque M, Arafat M, Sharmin S. An overview of nanogel drug delivery system. J Appl Pharm Sci 2013;3:S95-105.

34. Feeney M, Casadei MA, Matricardi P. Carboxymethyl derivative of scleroglucan: A novel thermosensitive hydrogel forming polysaccharide for drug delivery applications. J Mater Sci Mater Med 2009;20:1081-7.

35. Kohli E, Han HY, Zeman AD, Vinogradov SV. Formulations of biodegradable Nanogel carriers with 5?-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. J Controll Release 2007; 121:19-27.

36. Vinogradov SV. Polymeric nanogel formulations of nucleoside analogs. Expert Opin Drug Deliv 2007;4:5-17.

37. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: Synthesis, applications, and properties. Nanoscale Res Lett 2014;9:247.

38. Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014;6:139-50.

39. Swanson SD, Kukowska-Latallo JF, Patri AK, Chen C, Ge S, Cao Z, et al. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine 2008;3:201-10.

40. Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Larrea G, SosaFerreyra CF, et al. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014;2014:39.

41. Vacas-Córdoba E, Maly M, De la Mata FJ, Gómez R, Pion M, MuñozFernández MÁ, et al. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int J Nanomedicine 2016;11:1281-94.

42. Luganini A, Giuliani A, Pirri G, Pizzuto L, Landolfo S, Gribaudo G, et al. Peptide-derivatized dendrimers inhibit human cytomegalovirus infection by blocking virus binding to cell surface heparan sulfate. Antiviral Res 2010; 85:532-40.

43. Bayard B, Leserman LD, Bisbal C, Lebleu B. Antiviral activity in L1210 cells of liposome-encapsulated (2?-5?) oligo (adenylate) analogues. FEBS J 1985;151:319-25.

44. Düzgünes N, Pretzer E, Simões S, Slepushkin V, Konopka K, Flasher D, et al. Liposome-mediated delivery of antiviral agents to human immunodeficiency virus-infected cells. Mol Membr Biol 1999;16:111-8.

45. Düzgünes N, Simões S, Slepushkin V, Pretzer E, Flasher D, Salem II, et al. Delivery of antiviral agents in liposomes. Methods Enzymol 2005;391:351-73.

46. Sinico C, De Logu A, Lai F, Valenti D, Manconi M, Loy G, et al. Liposomal incorporation of Artemisia arborescens L. Essential oil and in vitro antiviral activity. Eur J Pharm Biopharm 2005;59:161-8.

47. Valenti D, De Logu A, Loy G, Sinico C, Bonsignore L, Cottiglia F, et al. Liposomeincorporated santolina insularis essential oil: Preparation, characterization and in vitro antiviral activity. J Liposome Res 2001;11:73-90.

48. Lian T, Ho RJ. Trends and developments in liposome drug delivery systems. J Pharm Sci 2001;90:667-80.

49. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017;9:12.

50. Horwitz E, Pisanty S, Czerninski R, Helser M, Eliav E, Touitou E, et al. A clinical evaluation of a novel liposomal carrier for acyclovir in the topical treatment of recurrent herpes labialis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;87:700-5.

51. Ranade VV. Drug delivery systems 4. Implants in drug delivery. J Clin Pharmacol 1990;30:871-89.

52. Rajgor N, Patel M, Bhaskar V. Implantable drug delivery systems: An overview. Syst Rev Pharm 2011;2l:91.

53. Blackshear PJ. Implantable drug-delivery systems. Sci Am 1979;241:66-73.

54. Johnson TP, Frey R, Modugno M, Brennan TP, Margulies BJ. Development of an aciclovir implant for the effective long-term control of herpes simplex virus type-1 infection in vero cells and in experimentally infected SKH-1 mice. Int J Antimicrob Agents 2007;30:428-35.

55. Dash AK, Cudworth GC 2nd. Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Methods 1998;40:1-2.

56. Iqbal MM, Middha AK. Effect of polymers on progesterone implants for estrus synchronization in livestock. Int J Pharm Drug Anal 2016;1:6-14.

57. Morie A, Garg T, Goyal AK, Rath G. Nanofibers as novel drug carrier – An overview. Artif Cells Nanomed Biotechnol 2016;44:135-43.

58. Dang NT, Sivakumaran H, Harrich D, Coombes AG. An evaluation of polycaprolactone matrices for vaginal delivery of the antiviral, tenofovir, in preventing heterosexual transmission of HIV. J Pharm Sci 2013;102:3725-35.

59. Asvadi NH, Dang NT, Davis-Poynter N, Coombes AG. Evaluation of microporous polycaprolactone matrices for controlled delivery of antiviral microbicides to the female genital tract. J Mater Sci Mater Med 2013;24:2719-27.

60. Nel A, Haazen W, Nuttall J, Romano J, Rosenberg Z, van Niekerk N, et al. A safety and pharmacokinetic trial assessing delivery of dapivirine from a vaginal ring in healthy women. AIDS 2014;28:1479-87.

61. Baeten JM, Palanee-Phillips T, Brown ER, Schwartz K, Soto-Torres LE, Govender V, et al. Use of a vaginal ring containing dapivirine for HIV-1 prevention in women. N Engl J Med 2016;375:2121-32.