Join us   Log in  


PHARMASPIRE - Volume 14, Issue 04 , 2022 , October-December

Pages: 135-140

In silico studies for the identification of potential SGLT2 inhibitors

Ritu Bhupal, Vivek Asati

Category: P'Ceutical Chemistry

Download PDF


Sodium glucose cotransporter 2 (SGLT2) inhibitors work by controlling the blood glucose levels, through limiting reabsorption of glucose from the blood therefore, and promoting glucose excretion in the urine. As it is reason for the 90% of reabsorption of glucose through insulin-independent mechanism. The present study described the screening of potential SGLT2 inhibitors using docking studies. In silico studies were carried out with help of the Schrödinger software using PDB ID:3DH4. Inhibitors were docked which resulted that phlorizin is one of the most potent compound having highest docking score -12.118 kcal/mol showing binding interaction with the Asn64, Ser66, Ala63, Ser91, Tyr263, Glu88, and Gln 428 (PBD ID: 3DH4) amino acids. Various ADME properties were studied and numerous properties were also analyzed. The forecast model can also be used for the further development of the potential compounds against SGLT2.

Keywords: Amino acids, Docking, In silico, PDB, Sodium glucose cotransporter 2


1. Ndefo UA, Anidiobi NO, Basheer E, Eaton AT. Empagliflozin (Jardiance): A novel SGLT2 inhibitor for the treatment of Type-2 diabetes. P T 2015;40:364-8.
2. Singh M, Kumar A. Risks associated with SGLT2 inhibitors: An overview. Curr Drug Saf 2018;13:84-91.
3. Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017;60:215-25.
4. El Masri D, Ghosh S, Jaber LA. Safety and efficacy of sodium-glucose cotransporter 2 (SGLT2) inhibitors in Type 1 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 2018;137:83-92.
5. Hsia DS, Grove O, Cefalu WT. An update on SGLT2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2017;24:73-9.
6. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in Type 2 diabetes, 2015: A patientcentered approach: Update to a position statement of the American diabetes association and the European association for the study of diabetes. Diabetes Care 2015;38:140-9.
7. Afrin N. Risk Factors of Diabetes Mellitus; A Review. East West University; 2016. Available from: https://www. -and-risk-factors-oftype-2-diabetes [Last accessed on 2022 Feb 12].
8. Taylor SI, Blau JE, Rother KI, Beitelshees AL. SGLT2 inhibitors as adjunctive therapy for Type 1 diabetes: Balancing benefits and risks. Lancet Diabetes Endocrinol 2019;7:949-58.
9. Opie LH. Sodium glucose co-transporter 2 (SGLT2) inhibitors: New among antidiabetic drugs. Cradiovasc Drugs Ther 2014;28:331-4.
10. DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol 2017;13:11-26.
11. Blau JE, Tella SH, Taylor SI, Rother KI. Ketoacidosis associated with SGLT2 inhibitor treatment: Analysis of FAERS data. Diabetes Metab Res Rev 2017;33:e2924.
12. Faillie JL. Pharmacological aspects of the safety of gliflozins. Pharmacol Res 2017;118:71-81.
13. Peene B, Benhalima K. Sodium glucose transporter protein 2 inhibitors: Focusing on the kidney to treat Type 2 diabetes. Ther Adv Endocrinol Metab 2014;5:124-36.
14. Salvatore T, Caturano A, Galiero R, Di Martino A, Albanese G, Vetrano E, et al. Cardiovascular benefits from gliflozins: Effects on endothelial function. Biomedicines 2021;9:1356.
15. Neal B, Perkovic V, Matthews DR, Mahaffey KW, Fulcher G, Meininger G, et al. Rationale, design and baseline characteristics of the CANagliflozin cardioVascular Assessment Study-Renal (CANVAS-R): A randomized, placebo-controlled trial. Diabetes Obes Metab 2017;19:387-93 ocking. JSM Chem 2016;4:1024-8.
17. Khamis MA, Gomaa W, Ahmed WF. Machine learning in computational docking. Artif Intell Med 2015;63:135-52.
18. Feher M, Williams CI. Effect of input differences on the results of docking calculations. J Chem Inf Model
19. Asati V, Bharti SK, Budhwani AK. 3D-QSAR and virtual screening studies of thiazolidine-2, 4-dione analogs: Validation of experimental inhibitory potencies towards PIM-1 kinase. J Mol Struct 2017;1133:278-93.
20. Das SK, Mahanta S, Tanti B, Tag H, Hui PK. Identification of phytocompounds from Houttuynia cordata Thunb. As potential inhibitors for SARS-CoV-2 replication proteins through GC–MS/LC–MS characterization, molecular docking and molecular dynamics simulation. Mol Divers 2022;26:365-88.
21. Krishnamurthy H, Piscitelli CL, Gouaux E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 2009;459:347-55.
22. Guedes IA, de Magalhães CS, Dardenne LE. Receptorligand molecular docking. Biophys Rev 2014;6:75-87.
23. Yuriev E, Agostino M, Ramsland PA. Challenges and advances in computational docking: 2009 in review. J Mol Recognit 2011;24:149-64.
24. Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 1988;110:5959-67.
25. Garden DP, Zhorov BS. Docking flexible ligands in proteins with a solvent exposure-and distancedependent dielectric function. J Comput Aided Mol Des 2010;24:91-105.
26. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: Docking and scoring incorporating a model ofhydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177-96.
27. Sun H, Li Y, Shen M, Tian S, Xu L, Pan P, et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 2014;16:22035-45.
28. Thomsen R, Christensen MH. MolDock: A new technique for high-accuracy molecular docking. J Med Chem 2006;49:3315-21.
29. Meng EC, Shoichet BK, Kuntz ID. Automated docking with grid-based energy evaluation. J Comput Chem 1992;13:505-24.
30. Graves AP, Shivakumar DM, Boyce SE, Jacobson MP, Case DA, Shoichet BK. Rescoring docking hit lists for model cavity sites: Predictions and experimental testing. J Mol Biol 2008;377:914-34.
31. Hou T, Wang J, Li Y, Wang W. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem 2011;32:866-77.
32. Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005;2:541-53.
33. Leung SS, Mijalkovic J, Borrelli K, Jacobson MP. Testing physical models of passive membrane permeation. J Chem Inf Model 2012;52:1621-36.
34. Shelke SM, Bhosale SH. Synthesis, antidepressant evaluation and QSAR studies of novel 2-(5H-[1, 2, 4] triazino [5, 6-b] indol-3-ylthio)-N-(substituted phenyl) acetamides. Bioorg Med Chem Lett 2010;20:4661-4.
35. Bisignano P, Ghezzi C, Jo H, Polizzi NF, Althoff T, Kalyanaraman C, et al. Inhibitor binding mode and allosteric regulation of Na+-glucose symporters. Nat Commun 2018;9:5245.
36. Abolhasani H, Zarghi A, Hamzeh-Mivehroud M, Alizadeh AA, Mojarrad JS, Dastmalchi S. In-silico investigation of tubulin binding modes of a series of novel antiproliferative spiroisoxazoline compounds using docking studies. Iran J Pharm Res 2015;14:141-7.

DOI: 10.56933/Pharmaspire.2022.14218