<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd">
      <Volume-Issue>Volume 15, Issue 01,2023 </Volume-Issue>
      <ArticleType>P'Ceutical Analysis</ArticleType>
      <ArticleTitle>Capillary electrophoresis: Recent advancements and applications of micellar electrokinetic capillary chromatography</ArticleTitle>
          <FirstName>Ghanshyam Das</FirstName>
          <FirstName>Balak Das</FirstName>
      <Abstract>The article discusses capillary electrophoresis (CE) as an advanced technique used for the separation and detection of various pharmaceutical drugs. CE involves the application of high voltages across buffer-filled capillaries to produce separation based on various separation theories, including capillary zone electrophoresis (CZE), micellar electrokinetic capillary chromatography (MEKC), capillary gel electrophoresis, and capillary isoelectric focusing. While traditional CZE is not suitable for the separation of neutral substances, MEKC was developed by Shigeru Terabe in the early 1990s to expand the use of CE to neutral analytes that cannot be separated using straightforward free solution CE. MEKC employs an ionic micellar solution that interacts with the analytes through partitioning processes like a chromatographic technique. To create a pseudostationary phase, a surfactant such as sodium dodecyl sulfate (SDS) is added to the buffer solution at a concentration higher than its critical micellar concentration. The anionic SDS micelles are electrostatically drawn towards the anode, while the electro-osmotic flow carries the bulk solution toward the negative electrode due to the negative charge on the inside surface of the silica capillaries. When a neutral analyte is introduced into the micellar solution, a portion is integrated into the micelle, while the remaining fraction of the analyte migrates with the electroosmotic velocity. Separation depends on the individual partitioning equilibrium of the various analytes between the micellar and the aqueous phase. The bigger percentage of analyte dispersed inside the micelle, the slower it will travel. This article provides an in-depth understanding of the separation principle and the mechanism involved in MEKC, highlighting its usefulness in separating neutral analytes that cannot be separated using traditional CZE.</Abstract>
      <Keywords>Micellar electrokinetic capillary chromatography, Micelle, Nanotechnology, Surfactants</Keywords>
        <Abstract>https://isfcppharmaspire.com/ubijournal-v1copy/journals/abstract.php?article_id=14646&amp;title=Capillary electrophoresis: Recent advancements and applications of micellar electrokinetic capillary chromatography</Abstract>
        <References>1. Bhimwal R, Rustandi RR, Payne A, Dawod M. Recent advances in capillary gel electrophoresis for the analysis of proteins. J Chromatogr A 2022;1682:46345.&#13;
2. ?emand;iacute;nek R, Foret F. Capillary electrophoretic methods for quality control analyses of pharmaceuticals: A review.&#13;
Electrophoresis 2021;42:19-37.&#13;
3. Tang T, Deng J, Zhang M, Shi G, Zhou T. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: A universal strategy for ratiometric detection of organophosphorus pesticides. Talanta 2016;146:55-61.&#13;
4. Stolz A, Jooand;szlig; K, Hand;ouml;cker O, Rand;ouml;mer J, Schlecht J, Neusand;uuml;and;szlig; C. Recent advances in capillary electrophoresismass spectrometry: Instrumentation, methodology and applications. Electrophoresis 2019;40:79-112.&#13;
5. Mantovani V, Galeotti F, Maccari F, Volpi N. Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides. Electrophoresis 2018;39:179-89.&#13;
6. Huie CW. Recent applications of microemulsion electrokinetic chromatography. Electrophoresis 2016;27:60-75.&#13;
7. Markus H, Maneula H, Wolfgang B, Christian WK. Microemulsion electrokinetic chromatography with on-line atmospheric pressure photoionization mass spectrometric detection. Anal Chem 2007;79:1564-8.&#13;
8. Buchberger W. Microemulsion electrokinetic chromatography. In: Schmitt-Kopplin, P, editors. Capillary Electrophoresis. Methods in Molecular Biology. United States: Humana Press; 2016. p. 1483.&#13;
9. Deng X, Yu Y, Yang X, Chen W, Hu Z. Preparation and application of a novel charged microemulsion for improved separation in electrokinetic chromatography. Anal Methods 2021;13:1509-17.&#13;
10. Li J, Li Y, Li H, Li H. Microemulsion electrokinetic chromatography for simultaneous determination of catechins and gallic acid in green tea. J Chromatogr B Analyt Technol Biomed Life Sci 2021;1172:122633.&#13;
11. Nagy E, Liu C, Chen Y. Surfactants in microemulsion electrokinetic chromatography. J Chromatogr A 2018;1571:63-71.&#13;
12. Wang Z, Wang X, Yang B, Zhang X. Sweeping-MEKC: A review. J Sep Sci 2016;39:36-49.&#13;
13. Hancu G, Simon B, Rusu A, Mircia E, Gyand;eacute;resi and;Aacute;. Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis. Adv Pharm Bull 2013;3:1.&#13;
14. Li R, Liu C, Li X, Li Q, Zhang H, Chen G. Development of a sweeping-MEKC method for simultaneous determination of 16 active compounds in fructus corn extract. J Sep Sci 2018;41:3866-74.&#13;
15. Wang SP, Huang TH. Separation and determination of aminophenols and phenylenediamines by liquid chromatography and micellar electrokinetic capillary chromatography. Anal Chim Acta 2005;534:207-14.&#13;
16. Guan Y, Chu Q, Fu L, Ye J. Determination of antioxidants in cosmetics by micellar electrokinetic capillary chromatography with electrochemical detection. J Chromatogr A 2015;1074:201-4.&#13;
17. Delgado-Zamarreno M, Gonzand;aacute;lez-Maza I, Sand;aacute;nchez-Pand;eacute;rez A, Martand;iacute;nez RC. Analysis of synthetic phenolic antioxidants in edible oils by micellar electrokinetic capillary chromatography. Food Chem 2007;100:1722-7.&#13;
18. Li X, Yin Z, Zhai Y, Kang W, Shi H, Li Z. Magnetic solidphase extraction of four and;beta;-lactams using polypyrrolecoated magnetic nanoparticles from water samples by micellar electrokinetic capillary chromatography analysis. J Chromatogr A 2020;1610:460541.&#13;
19. G?adysz M, Krand;oacute;l M, Mystek K, Ko?cielniak P. Application of micellar electrokinetic capillary chromatography to the discrimination of red lipstick samples. Forensic Sci Int 2019;299:49-58.&#13;
20. Aparicio-Muriana MM, Lhotskand;aacute; I, Garcand;iacute;a-Campaand;ntilde;a AM, Lara FJ. A first approach using micellar electrokinetic capillary chromatography for the determination of fipronil and fipronil-sulfone in eggs. Electrophoresis 2020;41:202-8.&#13;
21. Srivastava SK, Singh AK. Advancements in micellar electrokinetic chromatography. J Chromatogr Sci 2016;54:1299-14.&#13;
22. Shen Y, Wang Q, Liu X, Liu Y, Lu X, Zhang X. Sweeping-MEKC: A review on principles, applications, and prospects. Anal Methods 2019;11:992-1004.&#13;
23. Liu W, Cui Y, Zhao Z, Xie H, Zhang Y, Ding H, et al. Online sweeping micellar electrokinetic chromatography for the sensitive determination of paliperidone in human plasma. J Sep Sci 2017;40:692-8.&#13;
24. Chen X, Wu H, Zheng Y, Wang Y. Development of CD aided DLLME combined with a sweeping-MEKC method for concentration and detection of carbamazepine and clobazam in human urine samples. J Chromatogr B 2020;1154:122259.&#13;
25. Wu H, Zang L, Wang Y, Yang H, Liu L. Development of sulfonated and;beta;-cyclodextrin-grafted chitosan functionalized magnetic nanoparticles for efficient dispersive solidphase extraction of fluoroquinolones in milk. J Sep Sci 2021;44:3859-69.&#13;
26. Yang J, He L, Ma C, Sun J, Li L. Cyclodextrin-modified capillary electrophoresis coupled with a sequential injection system for highly sensitive determination of tartrazine and sunset yellow in drinks. J Chromatograph A 2021;1638:461882.&#13;
27. Kodama T, Murakami H, Uno B, Nakashima K, Kurosawa T. Micellar electrokinetic chromatography of hydroxyeicosatetraenoic acid enantiomers with hydroxypropyl-g-cyclodextrin. J Chromatog A 2021;963:28994.&#13;
28. Ghiasvand A, Feng Z, Quirino JP. Enrichment and separation of cationic, neutral, and chiral analytes by micelle to cyclodextrin stacking–micellar electrokinetic chromatography. Anal chem 2019;91:1752-7.&#13;
29. Ta HY, Jiang SJ, Huang HY, Sun YM, Chen YJ, Lai YH. Separation of unsaturated C18 fatty acids using perfluorinated-micellar electrokinetic chromatography. J Chromatogr A 2021;1648:462522.&#13;
30. Wang W, Wang Y, Zhou J, Yan Y, Qiu L. Comparison of capillary electrophoresis and micellar electrokinetic chromatography for the determination of dyes in foodstuffs. Food Anal Methods 2022;15:250-8.&#13;
31. Li Y, Li X, Yu C, Xue L, Li S, Zhang C, et al. A comparative study of capillary electrophoresis and micellar electrokinetic chromatography for the separation and quantification of related substances in captopril tablets. J Sep Sci 2022;45:581-9.&#13;
32. Zhang H, Liu Z, Liu Y, Liu Z, Yang G. Comparison of capillary electrophoresis and micellar electrokinetic chromatography for the separation of neurotransmitters and their metabolites in rat brain microdialysates. J Chromatogr A 2021;1638:461870.&#13;
33. Su Y, Wang J, Lu X, Zhang Y, Xu Y, Wang L, et al. A sensitive micellar electrokinetic chromatography method for simultaneous determination of delta-9- tetrahydrocannabinol and its two major metabolites in urine with sweeping online concentration. J Chromatogr B Analyt Technol Biomed Life Sci 2015;988:70-6.</References>