<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Publishing DTD v1.2d1 20170631//EN" "JATS-journalpublishing1.dtd">
      <Volume-Issue>Volume 11, Issue 4</Volume-Issue>
      <Season>October - December, 2019</Season>
      <ArticleTitle>Synthesis and in vitro evaluation of silica-based formulations</ArticleTitle>
          <FirstName>Hem Raj</FirstName>
          <FirstName>Vishav Prabhjot</FirstName>
          <FirstName>Raj Kumar</FirstName>
      <Abstract>Background: The cytotoxicity of the silica-based nanoformulations was investigated using non small cell human lung cancer cell line and RAW 264.7 macrophages cell line. Method: The formulations were exposed for 24 h at different dosage levels. 3-[4, 5-dimethylthiazol2-yl]-2, 5-diphenyl tetrazolium bromide assay was used to assess the cell response to the each formulation. Results: The formulations were found to have non-toxic in nature. Conclusion: These nanoformulations could be potentially used for delivering therapeutics for improved biopharmaceutical attributes.</Abstract>
      <Keywords>Cell line, cell viability, chitosan, cytotoxicity, porous aggregated  nanoparticles</Keywords>
        <Abstract>https://isfcppharmaspire.com/ubijournal-v1copy/journals/abstract.php?article_id=13850&amp;title=Synthesis and in vitro evaluation of silica-based formulations</Abstract>
        <References>1. Jones CF, David WG. In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 2009;61:438-56. &#13;
2. Vinay K, Neha S, Maitra SS. In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 2017;7:243-56. &#13;
3. Daniel K, Daniel A, Melvin A, Henry A, Johen CB, Kim B, et al. Toxicity testing in the 21st century: A vision and a strategy. J Toxicol Environ Health B Crit Rev 2010;13:51-138. &#13;
4. Parasuraman S. Toxicological screening. J Pharmacol Pharmacother 2011;2:74-9. &#13;
5. Gregory N, Paul SK, Dordick JS, Kwon SJ. Cell-based assay design for high-content screening of drug candidates. J Microbiol Biotechnol 2016;26:213-25. &#13;
6. Kristine MG, Karla FS, Lawrence EM. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. Int J Nanomedicine 2008;3:83-94. &#13;
7. Keshawa EM, Hemamala TK, Ranganath SS. In vitro assays and techniques utilized in anticancer drug discovery. J Appl Toxicol 2019;39:38-71. &#13;
8. Ashutosh B, Imran K, Vivek KB, Chul KS. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J Pharmacol 2017;12:115-8. &#13;
9. Mukred SR, Isra D, Mutasem OT. Stable chitosan-based nanoparticles using polyphosphoric acid or hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery. Front Bioeng Biotechnol 2020;l8:1-21. &#13;
10. Divya K, Jisha MS. Chitosan nanoparticles preparation and applications. Environ Chem Lett 2018;16:101-2.&#13;
11. Antonio R, Massimiliano B, Blasi P, Barbara P, Attilio CB. Chitosan nanoparticles: Preparation, size evolution and stability. Int J Pharm 2013;455:219-28. &#13;
12. Saeed AM, Najma S. Porous nanoparticles in drug delivery systems. Pak J Pharm Sci 2006;19:155-8.&#13;
13. Valentin V, Lubomira T. Porous nanosized particles: Preparation, properties, and applications. Chem Rev 2013;113:6734-60.</References>