Join us   Log in  

PHARMASPIRE - Volume 12, Issue 4, October- December, 2020

Pages: 124-133

Date of Publication: 10-Jun-2022

Print Article   Download XML  Download PDF

Coronavirus disease and its potential therapeutic options: A review

Author: Sharib Raza Khan, Babita Sharma, Prince Singh Rajput, Pooja A. Chawla

Category: Pharmaceutics


Coronavirus disease caused by severe acute respiratory syndrome coronavirus-2 (SARSCoV-2), originated in Wuhan, the city in Hubei territory in China. The virus came out in humans from the Wuhan seafood market by zoonotic transmission. The World Health Organization declared the SARS-CoV-2 outbreak a global pandemic in March 2020. Within few days, the virus had an outreach to many other countries and also across the mainland of China through travelers and somewhat by human-to-human transmission prompting to significant disease burden globally. More than 68.2 million patients have been infected including 1.56 million deaths with this respiratory illness across 210 nations and territories worldwide leading to a global pandemic. As of now, there are no clinically approved vaccines or specific therapeutic drugs available to treat SARS-CoV-2 infections. In this current review, an attempt was made to summarize the information about the description of human coronaviruses, the pathogenesis of respiratory illness at the cellular and molecular level as well as recently available therapeutic medications or treatment options.

Keywords: Severe acute respiratory syndrome coronavirus-2, World Health Organization, global pandemic, human coronaviruses, pathogenesis, treatments


1. Surveillances V. The epidemiological characteristics of an outbreak of 2019 novel Coronavirus diseases (COVID-19)-China, 2020. China CDC Wkly 2020;2:113-22.

2. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) and Coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020;55:105924.

3. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human Coronaviruses. J Adv Res 2020;24:91-8.

4. Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, et al. The deadly Coronaviruses: The 2003 SARS pandemic and the 2020 novel Coronavirus epidemic in China. J Autoimmun 2020;109:102434.

5. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: Guidelines on the management of critically ill adults with Coronavirus disease 2019 (COVID-19). Intensive Care Med 2020;46:854-87.

6. Jewell NP, Lewnard JA, Jewell BL. Caution warranted: Using the institute for health metrics and evaluation model for predicting the course of the COVID-19 pandemic. Ann Intern Med 2020;173:226-7.

7. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, etal. Evidence that Vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020;12:988.

8. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related Coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020;5:536-44.

9. Christian MD, Loutfy M, McDonald LC, Martinez KF, Ofner M, Wong T, et al. Possible SARS Coronavirus transmission during cardiopulmonary resuscitation. Emerg Infect Dis 2004;10:287-93.

10. Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung SM, et al. Incubation period and other epidemiological characteristics of 2019 novel Coronavirus infections with right truncation: A statistical analysis of publicly available case data. J Clin Med 2020;9:538.

11. Moskovitz DN, van Assche G, Maenhout B, Arts J, Ferrante M, Vermeire S, et al. Incidence of colectomy during long-term follow-up after cyclosporineinduced remission of severe ulcerative colitis. Clin Gastroenterol Hepatol 2006;4:760-5.

12. Zegarra-Valdivia J, Vilca BN, Tairo T, Munive V, Lastarria C. Neurological Component in Coronaviruses Induced Disease: Systematic Review of SARS? CoV, MERS?CoV, and SARS?CoV?2; 2020.

13. Buonaguro L, Tornesello ML, Buonaguro FM. Human immunodeficiency virus Type 1 subtype distribution in the worldwide epidemic: Pathogenetic and therapeutic implications. J Virol 2007;81:10209-19.

14. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS?CoV?2 in Wuhan, China. Allergy 2020;75:1730-41.

15. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like Coronaviruses. Science 2005;310:676-9.

16. Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect 2020;9:727-32.

17. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal 2020;10:102-8. 18. Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): Current status and future perspective. Int J Antimicrob Agents 2020;55:105951.

19. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020;55:105932.

20. Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, et al. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res 2013;23:300-2.

21. Zhou D, Dai SM, Tong Q. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother 2020;75:1667-70.

22. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against Coronavirus: What to expect for COVID-19? Int J Antimicrob Agents 2020;55:105938.

23. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020;14:72-3.

24. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004;59:252-6.

25. Liu X, Wang XJ. Potential inhibitors against 2019-nCoV Coronavirus M protease from clinically approved medicines. J Genet Genomics 2020;47:119-21.

26. Ye XT, Luo YL, Xia SC, Sun QF, Ding JG, Zhou Y, et al. Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019. Eur Rev Med Pharmacol Sci 2020;24:3390-6.

27. Rahmani H, Davoudi-Monfared E, Nourian A, Khalili H, Hajizadeh N, Jalalabadi NZ, et al. Interferon β-1b in treatment of severe COVID-19: A randomized clinical trial. Int Immunopharmacol 2020;88:106903.

28. Available from: [Last accessed on 2020 Mar 18]. 29. Dong L, Hu S, Gao J. Discovering drugs to treat Coronavirus disease 2019 (COVID-19). Drug Discov Ther 2020;14:58-60.

30. Wenzel RP, Edmond MB. Managing SARS amidst uncertainty. N Engl J Med 2003;348:1947-8.

31. Jones BM, Ma ES, Peiris JS, Wong PC, Ho JC, Lam B, et al. Prolonged disturbances of in vitro cytokine production in patients with severe acute respiratory syndrome (SARS) treated with ribavirin and steroids. Clin Exp Immunol 2004;135:467-73.

32. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel Coronavirus (2019- nCoV) in vitro. Cell Res 2020;30:269-71.

33. Stockman LJ, Bellamy R, Garner P. SARS: Systematic review of treatment effects. PLoS Med 2006;3:e343.

34. Wang Y, Fan G, Salam A, Horby P, Hayden FG, Chen C, et al. Comparative effectiveness of combined favipiravir and oseltamivir therapy versus oseltamivir monotherapy in critically ill patients with influenza virus infection. J Infect Dis 2020;221:1688-98.

35. Mentré F, Taburet AM, Guedj J, Anglaret X, Keïta S, de Lamballerie X, et al. Dose regimen of favipiravir for Ebola virus disease. Lancet Infect Dis 2015;15:150-1.

36. Sissoko D, Laouenan C, Folkesson E, M’lebing AB, Beavogui AH, Baize S, et al. Experimental treatment with favipiravir for Ebola virus disease (the JIKI trial): A historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Med 2016;13:e1001967.

37. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA 2020;117:6771-6.

38. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic Coronaviruses. Sci Transl Med 2017;9:eaal3653.

39. Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 Coronavirus. Antimicrob Agents Chemother 2020;64:e00399-20.

40. Khamitov RA, Loginova S, Shchukina VN, Borisevich SV, Maksimov VA, ShusterAM. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr Virusol 2008;53:9-13.

41. Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, et al. Clinical findings in a group of patients infected with the 2019 novel Coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ 2020;368:m792.

42. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9.

43. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel Coronavirus in Wuhan, China. Lancet 2020;395:497-506.

44. Ströher U, DiCaro A, Li Y, Strong JE, Aoki F, Plummer F, et al. Severe acute respiratory syndrome-related Coronavirus is inhibited by interferon-alpha. J Infect Dis 2004;189:1164-7.

45. Zorzitto J, Galligan CL, Ueng JJ, Fish EN. Characterization of the antiviral effects of interferon-alpha against a SARS-like coronoavirus infection in vitro. Cell Res 2006;16:220-9.

46. Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelzwaan GF, van Amerongen G, et al. Pegylated interferon-α protects Type 1 pneumocytes against SARS Coronavirus infection in macaques. Nat Med 2004;10:290-3. 47. Loutfy MR, Blatt LM, Siminovitch KA, Ward S, Wolff B, Lho H, et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: A preliminary study. JAMA 2003;290:3222-8.

48. Le RQ, Li L, Yuan W, Shord SS, Nie L, Habtemariam BA, et al. FDA approval summary: Tocilizumab for treatment of chimeric antigen receptor T cellinduced severe or life-threatening cytokine release syndrome. Oncologist 2018;23:943-7.

49. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020;117:10970-5.

50. Sarosiek S, Shah R, Munshi NC. Review of siltuximab in the treatment of multicentric Castleman’s disease. Ther Adv Hematol 2016;7:360-6.

51. Gritti G, Raimondi F, Ripamonti D, Riva I, Landi F, Alborghetti L, et al. IL-6 Signalling Pathway Inactivation with Siltuximab in Patients with COVID-19 Respiratory Failure: An Observational Cohort Study, medRxiv; 2020. 52. Rizzo E. Ivermectin, antiviral properties and COVID-19: A possible new mechanism of action. Naunyn Schmiedebergs Arch Pharmacol 2020;393:1153-6.

53. Neerukonda SN, Katneni U. A review on SARS-CoV-2 virology, pathophysiology, animal models, and anti-viral interventions. Pathogens 2020;9:426.

54. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020;178:104787.

55. Amsden GW. Anti-inflammatory effects of macrolides-an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J Antimicrob Chemother 2005;55:10-21.

56. Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 2010;23:590-615.

57. Gautret P, Lagier JC, Parola P, Meddeb L, Mailhe M, Doudier B, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020;56:105949.

58. Salamanna F, Maglio M, Landini MP, Fini M. Body localization of ACE-2: On the trail of the keyhole of SARS-CoV-2. Front Med (Lausanne) 2020;7:594495.

59. Bean D, Kraljevic Z, Searle T, Bendayan R, Pickles A, Folarin A, et al. Treatment with ACE-Inhibitors is Associated with Less Severe Disease with SARSCOVID-19 Infection in a Multi-Site UK Acute Hospital Trust, medRxiv; 2020. 60. Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel Coronavirus (2019- nCoV) infected pneumonia (standard version). Mil Med Res 2020;7:4.

61. ESICM, SCCM. Surviving Sepsis Campaign Rapid Guidelines of the Management of Critically Ill Adults with Coronavirus Disease; 2019. Available from: https:// [Last accessed on 2021 Jan 20].

62. Villar J, Ferrando C, Martínez D, Ambrós A, Muñoz T, Soler JA, et al. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir Med 2020;8:267-76.

63. FDA. Available from: [Last accessed on 2021 Jan 20].

64. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020;8:e21.

65. Brown BL, McCullough J. Treatment for emerging viruses: Convalescent plasma and COVID-19. Transfus Apher Sci 2020;59:102790.

66. Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med 2007;357:1450-1.

67. van Griensven J, Edwards T, de Lamballerie X, Semple MG, Gallian P, Baize S, et al. Evaluation of convalescent plasma for Ebola virus disease in Guinea. N Engl J Med 2016;374:33-42.

68. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020;20:398-400.

69. Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020;130:2757-65.

70. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020;323:1582-9.

71. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. The Feasibility of Convalescent Plasma Therapy in Severe COVID-19 Patients: A Pilot Study, medRxiv; 2020.

72. Zhang B, Liu S, Tan T, Huang W, Dong Y, Chen L, et al. Treatment with convalescent plasma for critically ill patients with severe acute respiratory syndrome Coronavirus 2 infection. Chest 2020158:e9-13.

73. Jawhara S. Could Intravenous immunoglobulin collected from recovered Coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci 2020;21:2272.

74. MacLennan S, Barbara JA. Risks and side effects of therapy with plasma and plasma fractions. Best Pract Res Clin Haematol 2006;19:169-89.

75. El-Aziz TM, Stockand JD. Recent progress and challenges in drug development against COVID-19 Coronavirus (SARS-CoV-2)-an update on the status. Infect Genet Evol 2020;83:104327.

76. Alharbi NK, Padron-Regalado E, Thompson CP, Kupke A, Wells D, Sloan MA, et al. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine 2017;35:3780-8.

77. Le TT, Andreadakis Z, Kumar A, Roman RG, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020;19:305-6.

78. Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis SARS CoV-2 Infection, NCT04283461 C; 2020. Available from: [Last accessed on 2021 Jan 20].

79. Yamamoto V, Bolanos JF, Fiallos J, Strand SE, Morris K, Shahrokhinia S, et al. COVID-19: Review of a 21st century pandemic from etiology to neuropsychiatric implications. J Alzheimers Dis 2020;77:459-504.

80. Available from: [Last accessed on 2021 Jan 20].