Join us   Log in  

PHARMASPIRE - Volume 13, Issue 4 , October - December, 2021

Pages: 157-167
Print Article   Download XML  Download PDF

Recent advances in the antifungal drug delivery to oral mucosa

Author: Khemendra Chaturvedi, Vineet Kumar Rai

Category: Pharmaceutics


Fungal infections have become more common in recent decades, and they are now recognized as major sources of morbidity and mortality. New antifungal therapies are undeniably required to combat harmful fungi. Some current antifungal agents present significant challenges, such as hydrophobic character, toxicity, pharmacological interactions, low aqueous solubility, and low oral bioavailability, which limit their clinical benefits. The oral mucosa is a potential site for drug delivery. Oral mucosa has several advantages for drug administration, including the avoidance of first-pass metabolism and low enzymatic activity, which may improve drug bioavailability and, as a result, patient compliance. Antifungals are effective against numerous types of infectious fungal diseases of mouth and are usually meant for the topical application to the oral mucosa. There are a number of possible applications for biopharmaceutical delivery to the oral mucosa. These include antimicrobial peptides as a treatment for bacterial and fungal infections. Mouthwashes, gel tablets, and dissolvable films are the most commonly used formulations for targeting the oral mucosa. Polyenes, azoles, allylamines, and echinocandin are the four primary types of currently available medicines for the treatment of invasive fungal infections, based on their mechanism of action. A review explores the most current discoveries in drug resistance mechanisms and their avoidance. Focusing on various types of antifungal agents and their therapies, such as combination therapy, may improve antifungal therapy. We also explain new strategies for developing antifungal agents that can be used to treat oral mucosal infections.

Keywords: Antifungal, oral mucosa, fungal infection, fungal resistance, combination therapy


  1. Nicolazzo JA, Reed BL, Finnin BC. Enhancing the buccal mucosal uptake and retention of triamcinolone acetonide. J Control Release 2005;105:240-8.
  2. Collins LM, Dawes C. The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J Dent Res 1987;66:1300-2.
  3. Shojaei AH. Buccal mucosa as a route for systemic drug delivery: A review. J Pharm Pharm Sci 1998;1:15-30.
  4. Lehr CM, Haas J. Developments in the area of bioadhesive drug delivery systems. Expert Opin Biol Ther 2002;2:287-98.
  5. C Silva A, Santos D, Ferreira D, Lopes CM. Lipid-based nanocarriers as an alternative for oral delivery of poorly water-soluble drugs: Peroral and mucosal routes. Curr Med Chem 2012;19:4495-510.
  6. Rossi S, Sandri G, Caramella CM. Buccal drug delivery: A challenge already won? Drug Discov Today Technol 2005;2:59-65.
  7. Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release 2011;153:106-16.
  8. Sankar V, Hearnden V, Hull K, Juras DV, Greenberg MS, Kerr AR, et al. Local drug delivery for oral mucosal diseases: Challenges and opportunities. Oral Dis 2011;17:73-84.
  9. Hearnden V. Developing tissue engineered models of oral mucosa and oral cancer to study novel therapeutic and diagnostic techniques. In: Doctoral Dissertation, University of Sheffield; 2010.
  10. Vrbata P. Nanofibers Membranes as Drug carriers. Hradec Kralove: Czechia: Charles University, Faculty of Pharmacy in Hradec Králové; 2015.
  11. Squier CA, Nanny D. Measurement of blood flow in the oral mucosa and skin of the rhesus monkey using radiolabelled microspheres. Arch Oral Biol 1985;30:313-8.
  12. Semalty A, Semalty M, Singh R, Saraf SK, Saraf S. Properties and formulation of oral drug delivery systems of protein and peptides. Indian J Pharm Sci 2007;69:741.
  13. Pather SI, Rathbone MJ, ?enel S. Current status and the future of buccal drug delivery systems. Expert Opin Drug Deliv 2008;5:531-42.
  14. Bonjoch A, Pou C, Pérez-Álvarez N, Bellido R, Casadella M, Puig J, et al. Switching the third drug of antiretroviral therapy to maraviroc in aviraemic subjects: A pilot, prospective, randomized clinical trial. J Antimicrob Chemother 2013;68:1382-7.
  15. Kavanagh K, Dowd S. Histatins: Antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 2004;56:285-9.
  16. Autio-Gold J. The role of chlorhexidine in caries prevention. Oper Dent 2008;33:710-6.
  17. Innocenti M, Moscatelli G, Lopez S. Efficacy of gelclair in reducing pain in palliative care patients with oral lesions: Preliminary findings from an open pilot study. J Pain Symptom Manage 2002;24:456-7.
  18. Bensadoun RJ, Daoud J, El Gueddari B, Bastit L, Gourmet R, Rosikon A, et al. Comparison of the efficacy and safety of miconazole 50-mg mucoadhesive buccal tablets with miconazole 500-mg gel in the treatment of oropharyngeal candidiasis: A prospective, randomized, single-blind, multicenter, comparative, phase III trial in patients treated with radiotherapy for head and neck cancer. Cancer 2008;112:204-11.
  19. Hearnden V, Sankar V, Hull K, Juras DV, Greenberg M, Kerr AR, et al. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv Drug Deliv Rev 2012;64:16-28.
  20. Schechter NL, Weisman SJ, Rosenblum M, Bernstein B, Conard PL. The use of oral transmucosal fentanyl citrate for painful procedures in children. Pediatrics 1995;95:335-9.
  21. Santocildes-Romero ME, Hadley L, Clitherow KH, Hansen J, Murdoch C, Colley HE, et al. Fabrication of electrospun mucoadhesive membranes for therapeutic applications in oral medicine. ACS Appl Mater Interfaces 2017;9:11557-67.
  22. Bhati R, Nagrajan RK. A detailed review on oral mucosal drug delivery system. Int J Pharm Sci Res 2012;3:659-81.
  23. Verma S, Kaul M, Rawat A, Saini S. An overview on buccal drug delivery system. Int J Pharm Sci Res 2011;2:1303.
  24. Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012;2012:713687.
  25. Zhang AY, Camp WL, Elewski BE. Advances in topical and systemic antifungals. Dermatol Clin 2007;25:165-83.
  26. Edwards RA, Puente JL. Fimbrial expression in enteric bacteria: A critical step in intestinal pathogenesis. Trends Microbiol 1998;6:282-7.
  27. Tumbarello M, Posteraro B, Trecarichi EM, Fiori B, Rossi M, Porta R, et al. Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. J Clin Microbiol 2007;45:1843.
  28. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: Human fungal infections. Sci Transl Med 2012;4:165rv13.
  29. Richardson MD. Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother 2005;56 Suppl 1:i5-11.
  30. Pfaller M, Neofytos D, Diekema D, Azie N, Meier-Kriesche HU, Quan SP, et al. Epidemiology and outcomes of candidemia in 3648 patients: Data from the Prospective antifungal therapy (PATH Alliance®) registry, 2004-2008. Diagn Microbiol Infect Dis 2012;74:323-31.
  31. Roussey JA, Olszewski MA, Osterholzer JJ. Immunoregulation in fungal diseases. Microorganisms 2016;4:47.
  32. Chen K, Kolls JK. T cell-mediated host immune defenses in the lung. Annu Rev Immunol 2013;31:605-33.
  33. Carmona EM, Limper AH. Overview of treatment approaches for fungal infections. Clin Chest Med 2017;38:393-402.
  34. Pianalto KM, Alspaugh JA. New horizons in antifungal therapy. J Fungi (Basel) 2016;2:26.
  35. Mazu TK, Bricker BA, Flores-Rozas H, Ablordeppey SY. The mechanistic targets of antifungal agents: An overview. Mini Rev Med Chem 2016;16:555-78.
  36. Rex JH, Walsh TJ, Nettleman M, Anaissie EJ, Bennett JE, Bow EJ, et al. Need for alternative trial designs and evaluation strategies for therapeutic studies of invasive mycoses. Clin Infect Dis 2001;33:95-106.
  37. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 2007;6:29-40.
  38. Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, et al. The biology and chemistry of antifungal agents: A review. Bioorg Med Chem 2012;20:5678-98.
  39. Butts A, Krysan DJ. Antifungal drug discovery: Something old and something new. PLoS Pathog 2012;8:e1002870.
  40. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A 2012;109:2234-9.
  41. Kumar TP, Eswaraiah MC. Formulation and evaluation of topical hydrogel containing antifungal drug. Pharm Pharmacol Int J 2020;8:249-54.
  42. Rasool BK, Khan SA. In vitro evaluation of miconazole mucoadhesive buccal films. Int J Appl Pharm 2010;2:23-6.
  43. Rençber S, Karavana SY, ?enyi?it ZA, Eraç B, Limoncu MH, Balo?lu E. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: Formulation, preparation, and in vitro/in vivo evaluation. Pharm Dev Technol 2017;22:551-61.
  44. Ghurghure SM, Ka K, Ys T, Ma P. Preparation and In Vitro Evaluation of Itraconazole Loaded Nanosponges for Topical Drug Delivery; 2020.
  45. Rençber S, Karavana SY, Yilmaz FF, Eraç B, Nenni M, Gurer-Orhan H, et al. Formulation and evaluation of fluconazole loaded oral strips for local treatment of oral candidiasis. J Drug Deliv Sci Technol 2019;49:615-21.
  46. Mohiuddin MH, Sharma S. Formulation and Development of Mucoadhesive Tablet of Posaconazolefor Oral Candidiasis; 2018.
  47. Nairy HM, Charyulu NR, Shetty VA, Prabhakara P. A pseudo-randomised clinical trial of in situ gels of fluconazole for the treatment of oropharngeal candidiasis. Trials 2011;12:99.
  48. Serrano DR, Fernandez-Garcia R, Mele M, Healy AM, Lalatsa A. Designing fast-dissolving orodispersible films of amphotericin B for oropharyngeal candidiasis. Pharmaceutics 2019;11:369.
  49. Salama M, Mahdy MA, Mohamed A, Mohamed AT, Keleb EI, Omar AA, et al. Formulation and evaluation of ketoconazole polymeric films for topical application. J Appl Pharm Sci 2015;5:28-32.
  50. Helal DA, Attia D, Abdel-Halim SA, El-Nabarawi MA. Formulation and evaluation of fluconazole topical gel. Int J Pharm Pharm Sci 2012;4:176-83.
  51. Basha BN, Prakasam K, Goli D. Formulation and evaluation of gel containing fluconazole-antifungal agent. Int J Drug Dev Res 2011;3:119-27.
  52. Rapalli VK, Banerjee S, Khan S, Jha PN, Gupta G, Dua K, et al. QbD-driven formulation development and evaluation of topical ydrogel containing ketoconazole loaded cubosomes. Mater Sci Eng C 2021;119:111548.
  53. Bhaduka G, Rajawat JS. Formulation development and in vitro in vivo characterization of voriconazole tablet. J Crit Rev 2020;7:117-23.
  54. Paroliya R, Jain NP, Banke A. Formulation development and evaluation of ethosomal gel of amphotericin b for treatment of fungal infections. Int J Pharm Drug Res 2019;7:10-8.
  55. Kapileshwari GR, Barve AR, Kumar L, Bhide PJ, Joshi M, Shirodkar RK. Novel drug delivery system of luliconazole-Formulation and characterisation. J Drug Deliv Sci Technol 2020;55:101302.
  56. Thakkar HP, Khunt A, Dhande RD, Patel AA. Formulation and evaluation of itraconazole nanoemulsion for enhanced oral bioavailability. J Microencapsul 2015;32:559-69.
  57. Patil MV, Jadhav RL, Shaikh SN, Belhekar SN. Formulation and evaluation thermoreversible gel of antifungal agent for treatment of vaginal infection. J Pharm Res Int 2020:58-66.
  58. Pharm AG, Pharm SM, Pharm SS, Pharm SP, Pharma NT, Shrestha JR, Pharm MB. Formulation and evaluation of fluconazole gel for topical drug delivery system. Am Sci Res J Eng Technol Sci 2021;76:124-37.
  59. Vecchi CF, dos Santos RS, da Silva JB, Rosseto HC, Sakita KM, Svidzinski TI, et al. Development and in vitro evaluation of buccal mucoadhesive films for photodynamic inactivation of Candida albicans. Photodiagnosis Photodyn Ther 2020;32:101957.
  60. Aljaeid BM, Hosny KM. Miconazole-loaded solid lipid nanoparticles: Formulation and evaluation of a novel formula with high bioavailability and antifungal activity. Int J Nanomed 2016;11:441.
  61. Nafee NA, Ismail FA, Boraie NA, Mortada LM. Mucoadhesive buccal patches of miconazole nitrate: In vitro/in vivo performance and effect of ageing. Int J Pharm 2003;264:1-4.
  62. Rao M, Kamble P. Formulation and evaluation of antifungal proniosomal gel for oral candidiasis. J Drug Deliv Ther 2018;8:291-301.
  63. Harish NM, Prabhu P, Charyulu RN, Gulzar MA, Subrahmanyam EV. Formulation and evaluation of in situ gels containing clotrimazole for oral candidiasis. Indian J Pharm Sci 2009;71:421.
  64. Reza T, Sara MS. Formulation and evaluation of buccoadhesive tablets of clotrimazole. Asian J Pharm 2014;4:194-8.
  65. Singh S, Jain S, Muthu MS, Tiwari S, Tilak R. Preparation and evaluation of buccal bioadhesive films containing clotrimazole. Aaps PharmSciTech 2008;9:660-7.
  66. Jin Q, Chen W, Wu W. Development and evaluation of miconazole mucoadhesive tablets for oropharyngeal candidiasis. Trop J Pharm Res 2017;16:2325-30.
  67. Dhake AS, Shinkar DM, Shayle SO, Patil SB, Setty CM. Development and evaluation of mucoadhesive tablets of clotrimazole and its β-cyclodextrin complex for the treatment of candidiasis. Int J Pharm Pharm Sci 2011;3:159-64.
  68. Singh K, Malviya R, Sharma PK. Solubility enhancement of miconazole nitrate for formulation and evaluation of mucoadhesive gel. J Drug Deliv Ther 2014;4:124-9.
  69. Juliano C, Cossu M, Pigozzi P, Rassu G, Giunchedi P. Preparation, in vitro characterization and preliminary in vivo evaluation of buccal polymeric films containing chlorhexidine. Aaps PharmSciTech 2008;9:1153-8.
  70. Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother 2019;110:857-68.
  71. Chang YL, Yu SJ, Heitman J, Wellington M, Chen YL. New facets of antifungal therapy. Virulence 2017;8:222-36.
  72. Souza AC, Amaral AC. Antifungal therapy for systemic mycosis and the nanobiotechnology era: Improving efficacy, biodistribution and toxicity. Front Microbiol 2017;8:336.
  73. Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. An insight into the antifungal pipeline: Selected new molecules and beyond. Nat Rev Drug Discov 2010;9:719-27.
  74. Pierce CG, Srinivasan A, Uppuluri P, Ramasubramanian AK, López-Ribot JL. Antifungal therapy with an emphasis on biofilms. Curr Opin Pharmacol 2013;13:726-30.
  75. Odds FC, Brown AJ, Gow NA. Antifungal agents: Mechanisms of action. Trends Microbiol 2003;11:272-9.
  76. Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 2014;10:400.
  77. Emami S, Tavangar P, Keighobadi M. An overview of azoles targeting sterol 14α-demethylase for antileishmanial therapy. Eur J Med Chem 2017;135:241-59.
  78. Onyewu C, Blankenship JR, Del Poeta M, Heitman J. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 2003;47:956-64.
  79. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect Dis 2017;17:e383-92.
  80. Haidar G, Singh N. How we approach combination antifungal therapy for invasive aspergillosis and mucormycosis in transplant recipients. Transplantation 2018;102:1815-23.
  81. Wiederhold NP. Antifungal resistance: Current trends and future strategies to combat. Infect Drug Resist 2017;10:249-59.
  82. Mughini-Gras L, Heck M, van Pelt W. Increase in reptile-associated human salmonellosis and shift toward adulthood in the age groups at risk, The Netherlands, 1985 to 2014. Euro Surveill 2016;21:30324.
  83. Wiederhold NP. The antifungal arsenal: Alternative drugs and future targets. Int J Antimicrob Agents 2018;51:333-9.
  84. Arendrup MC, Cuenca-Estrella M, Lass-Florl C, Hope WW. EUCAST technical note on Aspergillus and amphotericin B, itraconazole, and posaconazole. Clin Microbiol Infect 2012;18:E248-50.
  85. Pippi B, Lana AJ, Moraes RC, Güez CM, Machado M, de Oliveira LF, et al. In vitro evaluation of the acquisition of resistance, antifungal activity and synergism of Brazilian red propolis with antifungal drugs on Candida spp. JAppl Microbiol 2015;118:839-50.
  86. Machado GR, Pippi B, Dalla Lana DF, Amaral AP, Teixeira ML, Souza KC, Fuentefria AM. Reversal of fluconazole resistance induced by a synergistic effect with Acca sellowiana in Candida glabrata strains. Pharm Biol 2016;54:2410-9.
  87. Moraes RC, Carvalho AR, Lana AJ, Kaiser S, Pippi B, Fuentefria AM, et al. In vitro synergism of a water insoluble fraction of Uncaria tomentosa combined with fluconazole and terbinafine against resistant non-Candida albicans isolates. Pharm Biol 2017;55:406-15.
  88. Danielli LJ, Pippi B, Soares KD, Duarte JA, Maciel AJ, Machado MM, et al. Chemosensitization of filamentous fungi to antifungal agents using Nectandra Rol. ex Rottb. species essential oils. Ind Crops Prod 2017;102:7-15.
  89. Khan MS, Ahmad I, Cameotra SS. Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. Amb Express 2013;3:54.
  90. Ahmadi F, Sadeghi S, Modarresi M, Abiri R, Mikaeli A. Chemical composition, in vitro anti-microbial, antifungal and antioxidant activities of the essential oil and methanolic extract of Hymenocrater longiflorus Benth., of Iran. Food Chem Toxicol 2010;48:1137-44.
  91. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 2015;5:a019752.
  92. Tobudic S, Kratzer C, Presterl E. Azole-resistant Candida spp.-emerging pathogens? Mycoses 2012;55:24-32.
  93. Campoy S, Adrio JL. Antifungals. Biochem Pharmacol 2017;133:86-96.
  94. Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med 2016;3:11.
  95. D’Enfert C. Hidden killers: Persistence of opportunistic fungal pathogens in the human host. Curr Opin Microbiol 2009;12:358-64.
  96. Erjavec Z, Verweij PE. Recent progress in the diagnosis of fungal infections in the immunocompromised host. Drug Resist Updat 2002;5:3-10.
  97. Low CY, Rotstein C. Emerging fungal infections in immunocompromised patients. F1000 Med Rep 2011;3:14.
  98. Parente-Rocha JA, Bailão AM, Amaral AC, Taborda CP, Paccez JD, Borges CL, et al. Antifungal resistance, metabolic routes as drug targets, and new antifungal agents: An overview about endemic dimorphic fungi. Mediators Inflamm 2017;2017:9870679.
  99. Armstrong-James D, Meintjes G, Brown GD. A neglected epidemic: Fungal infections in HIV/AIDS. Trends Microbiol 2014;22:120-7.
  100. . Jampilek J. How can we bolster the antifungal drug discovery pipeline? Future Med Chem 2016;8:1393-7.
  101. Roemer T, Krysan DJ. Antifungal drug development: Challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 2014;4:a019703.
  102. . Wheeler MH, Bell AA. Melanins and their importance in pathogenic fungi. Curr Top Med Mycol 1988;2:338-87.
  103. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: Side effects and toxicity. Rev Iberoam Micol 2009;26:223-7.
  104. Osherov N, Kontoyiannis DP. The anti-Aspergillus drug pipeline: Is the glass half full or empty? Sabouraudia 2016;55:118-24.
  105. Téné N, Bonnafé E, Berger F, Rifflet A, Guilhaudis L, Ségalas-Milazzo I, et al. Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide. Peptides 2016;79:103-13.
  106. da Silva AR, de Andrade Neto JB, da Silva CR, de Sousa Campos R, Silva RA, Freitas DD, et al. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: Action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob Agents Chemother 2016;60:3551-7.
  107. López-Abarrategui C, McBeth C, Mandai SM, Sun ZJ, Heffron G, AlbaMenéndez A, et al. Cm-p5: An antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae). FASEB J 2015;29:3315-25.
  108. Amaral AC, Silva ON, Mundim NC, de Carvalho MJ, Migliolo L, Leite JR, et al. Predicting antimicrobial peptides from eukaryotic genomes: In silico strategies to develop antibiotics. Peptides 2012;37:301-8.
  109. Abadio AK, Kioshima ES, Leroux V, Martins NF, Maigret B, Felipe MS. Identification of new antifungal compounds targeting thioredoxin reductase of Paracoccidioides genus. PLoS One 2015;10:e0142926.
  110. Ling C, Fu L, Gao S, Chu W, Wang H, Huang Y, et al. Design, synthesis, and structure-activity relationship studies of novel thioether pleuromutilin derivatives as potent antibacterial agents. J Med Chem 2014;57:4772-95.
  111. Prado RS, Bailão AM, Silva LC, de Oliveira C, Marques MF, Silva LP, et al. Proteomic profile response of Paracoccidioides lutzii to the antifungal argentilactone. Front Microbiol 2015;6:616.
  112. Araujo FS, Coelho LM, Silva LD, da Silva Neto BR, Parente-Rocha JA, Bailao AM, et al. Effects of argentilactone on the transcriptional profile, cell wall and oxidative stress of Paracoccidioides spp. PLoS Negl Trop Dis 2016;10:e0004309.
  113. Scorzoni L, de Paula e Silva AC, Marcos CM, Assato PA, de Melo WC, de Oliveira HC, et al. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front Microbiol 2017;8:36.
  114. Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc 2011;86:805-17.
  115. Gupta AK, Cooper EA. Update in antifungal therapy of dermatophytosis. Mycopathologia 2008;166:353-67.
  116. Zhang L, Pornpattananangkul D, Hu CM, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010;17:585-94.
  117. Ashley ES, Lewis R, Lewis JS, Martin C, Andes D. Pharmacology of systemic antifungal agents. Clin Infect Dis 2006;43 Suppl 1:S28-39.
  118. Churchill DN, Seely J. Nephrotoxicity associated with combined gentamicinamphotericin B therapy. Nephron 1977;19:176-81.
  119. Arikan S, Rex JH. Lipid-based antifungal agents’ current status. Curr Pharm Des 2001;7:393-415.
  120. Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release 2016;224:86-102.
  121. Mbah CC, Builders PF, Attama AA. Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus. Expert Opin Drug Deliv 2014;11:45-59.
  122. Chang EH, Harford JB, Eaton MA, Boisseau PM, Dube A, Hayeshi R, et al. Nanomedicine: Past, present and future-a global perspective. Biochem Biophys Res Commun 2015;468:511-7.
  123. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release 2015;200:138-57.
  124. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010;9:615-27.
  125. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006;2:8-21.
  126. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nanoenabled Med Appl 2020;2:61-91.
  127. Radomska A, Leszczyszyn J, Radomski MW. The nanopharmacology and nanotoxicology of nanomaterials: New opportunities and challenges. Adv Clin Exp Med 2016;25:151-62.
  128. Guidance D. Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology; 2014.
  129. Fuentefria AM, Pippi B, Dalla Lana DF, Donato KK, de Andrade SF. Antifungals discovery: An insight into new strategies to combat antifungal resistance. Lett Appl Microbiol 2018;66:2-13.
  130. van Daele R, Spriet I, Wauters J, Maertens J, Mercier T, van Hecke S, Brüggemann R. Antifungal drugs: What brings the future? Med Mycol 2019;57 Suppl 3:S328-43.
  131. Denning DW, Bromley MJ. How to bolster the antifungal pipeline. Science 2015;347:1414-6.
  132. Arendrup MC, Patterson TF. Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. J Infect Dis 2017;216 Suppl 3:S445-51.
  133. Sanguinetti M, Posteraro B, Lass-Flörl C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015;58:2-13.
  134. Hadrich I, Ayadi A. Epidemiology of antifungal susceptibility: Review of literature. J Mycol Med 2018;28:574-84.
  135. Brown GD, Denning DW, Levitz SM. Tackling human fungal infections. Science 2012;336:647.
  136. Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet 1996;14:450-6.
  137. Giaever G, Shoemaker DD, Jones TW, Liang H, Winzeler EA, Astromoff A, et al. Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat Genet 1999;21:278-83.
  138. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002;418:387-91.
  139. Giaever G, Flaherty P, Kumm J, Proctor M, Nislow C, Jaramillo DF, et al. Chemogenomic profiling: Identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci 2004;101:793-8.
  140. Roemer T, Xu D, Singh SB, Parish CA, Harris G, Wang H, et al. Confronting the challenges of natural product-based antifungal discovery. Chem Biol 2011;18:148-64.
  141. Casanova BB, Muniz MN, de Oliveira T, de Oliveira LF, Machado MM, Fuentefria AM, et al. Synthesis and biological evaluation of hydrazone derivatives as antifungal agents. Molecules 2015;20:9229-41.
  142. Dalla Lana DF, Donato RK, Bündchen C, Guez CM, Bergamo VZ, de Oliveira LF, et al. Imidazolium salts with antifungal potential against multidrug-resistant dermatophytes. J Appl Microbiol 2015;119:377-88.
  143. Roemer T, Xu D, Singh SB, Paish CA, Harris G, Wang G, et al. Confronting the challenges of natural product-based antifungal discovery. Chem Biol 2011;18:148-64.
  144. Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, et al. Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 2007;3:e24.
  145. Ahmad A, Wani MY, Khan A, Manzoor N, Molepo J. Synergistic interactions of eugenol-tosylate and its congeners with fluconazole against Candida albicans. Plos One 2015;10:e0145053.